A Journal "Theory of Probability and Mathematical Statistics"
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



Statistical analysis of conditionally binomial nonlinear regression time series with discrete regressors

Yu. S. Kharin, V. A. Voloshko

Download PDF

Abstract: The model of conditionally binomial nonlinear regression time series with discrete regressors is considered. A new frequencies-based estimator (FBE) of explicit form is constructed for this model. FBE is shown to be consistent, asymptotically normal, asymptotically effective, and to have less restrictive uniqueness assumptions w. r. t. the classical MLE. A fast recursive algorithm is constructed for FBE re-computation under model extension. Asymptotically optimal Wald test and forecasting

Keywords: Discrete regression time series, discrete regressors, generalized linear model, frequencies-based estimator, asymptotic efficiency, forecasting.

Bibliography:
ed on FBE are developed. Computer experiments on simulated data are performed for FBE.
Bibliography: 1. B. Kedem, K. Fokianos, Regression Models for Time Series Analysis, Wiley, Hoboken, 2002.
2. Yu. S. Kharin, Robustness in Statistical Forecasting, Springer, Cham, Heidelberg, New York, Dordrecht, London, 2013.
3. O. O. Dashkov, A. G. Kukush, Consistency of the orthogonal regression estimator in an implicit linear model with errors in variables, Theory Probab. Math. Statist., 97 (2018), 45–55.
4. J. Nelder, R. Wedderburn, Generalized linear models, J. Royal Statistical Society. Series A, 35 (1972), no. 3, 370–384.
5. P. McCullagh, J. A. Nelder, Generalized Linear Models, Chapman and Hall, London, 1989.
6. C. H. Weiss, An Introduction to Discrete-Valued Time Series, John Wiley and Sons Ltd, 2018.
7. Yu. S. Kharin, E. V. Vecherko, Statistical estimation of parameters for binary Markov chain models with embeddings, Discrete Mathematics and Applications, 23 (2013), no. 2, 153–169.
8. Yu. S. Kharin, E. V. Vecherko, Detection of embeddings in binary Markov chains, Discrete Mathematics and Applications, 26 (2016), no. 1, 13–29.
9. V. A. Voloshko, Steganographic capacity for one-dimensional Markov cover, Discrete Mathematics and Applications, 27 (2017), no. 4, 247–268.
10. Yu. S. Kharin, V. A. Voloshko, E. A. Medved, Statistical estimation of parameters for binary conditionally nonlinear autoregressive time series, Mathematical Methods of Statistics, 27 (2018), no. 2, 103–118.
11. L. Fahrmeir, H. Kaufmann, Consistency and Asymptotic Normality of the Maximum Likelihood Estimator in Generalized Linear Models, The Annals of Statistics, 13 (1985), no. 1, 342–368.
12. B. Noble, J. W. Daniel, Applied Linear Algebra, Prentice-hall, Englewood Cliffs, 1988.
13. A. N. Shiryaev, Probability, Springer, New York, 1995.
14. A. Wald, Tests of statistical hypotheses concerning several parameters when the number of observations is large, Trans. Amer. Math. Soc., 54 (1943), no. 3, 426–482.
15. S. J. Haberman, Maximum likelihood estimates in exponential response models, The Annals of Statistics, 5 (1977), no. 5, 815–841.
16. R. W. M. Wedderburn, On the Existence and Uniqueness of the Maximum Likelihood Estimates for Certain Generalized Linear Models, Biometrika, 63 (1976), no. 1, 27–32.
17. M. Bagnoli, T. Bergstrom, Log-Concave Probability and Its Applications, University of Michigan, 1989.
18. C. Jordan, Essai sur la géométrie à n dimensions, Bulletin de la Société Mathématique de France, 3 (1875), 103–174.
19. Yu. Kharin, Robustness of clustering under outliers, Lecture Notes in Computer Science, 1280 (1997), 501–511.
20. Yu. Kharin, E. Zhuk, Filtering of multivariate samples containing “outliers” for clustering, Pattern Recognition Letters, 19 (1998), 1077–1085.
21. Yu. Kharin, Robustness of the mean square risk in forecasting of regression time series, Communications in Statistics – Theory and Methods, 40 (2011), no. 16, 2893–2906.
22. A. Kharin, Performance and robustness evaluation in sequential hypotheses testing, Communications in Statistics – Theory and Methods, 45 (2016), no. 6, 1693–1709.