Theory of Probability and Mathematical Statistics
Generalized Nadaraya–Watson estimator for observations from mixture
H. M. Dychko, R. E. Maiboroda
Download PDF
Abstract: A generalization of Nadaraya–Watson kernel regression estimators is considered for estimation by observations from a mixture with varying concentrations. Consistency and asymptotic normality of the estimators are shown.
Keywords: mixture with varying concentrations, nonparametric regression, asymptotic normality, Nadaraya–Watson estimator.
Bibliography: 1. T. Benaglia, D. Chauveau, D. Hunter, D. Young, mixtools: An R Package for Analyzing Finite Mixture Models, Journal of Statistical Software, 32 (2009), no.6, 1–29.
2. A. A. Borovkov, Probability theory, Springer, New York, 2013.
3. S. Faria, G. Soromenhob, Fitting mixtures of linear regressions, Journal of Statistical Computation and Simulation, 80 (2010), no.2, 201–225.
4. B. Grün, F. Leisch, Fitting finite mixtures of linear regression models with varying & fixed effects in R, Compstat 2006 — Proceedings in Computational Statistics (A. Rizzi, M. Vichi), Physica Verlag, Heidelberg, 2006, 853–860.
5. W. Hardle, M. Muller, S. Sperlich, A. Werwatz, Nonparametric and Semiparametric Models, Springer-Verlag, Berlin, 2004.
6. D. Liubashenko, R. Maiboroda, Linear regression by observations from mixtures with varying concentrations, Modern Stochastics: Theory and Applications, 2 (2015), 343–353.
7. P. Macdonald, J. Du, mixdist: Finite Mixture Distribution Models. R package version 0.5-2. Online publication, 2012. — http://www.math.mcmaster.ca/peter/mix/mix.html
8. R. Maiboroda, V. Miroshnichenko, Confidence ellipsoids for regression coefficients by observations from a mixture, Modern Stochastics: Theory and Applications, 5 (2018), no.2, 225–245.
9. R. Maiboroda, O. Sugakova, Estimation and classification by observations form mixture, Kyiv University Publishers, Kyiv, 2008. (Ukrainian)
10. R. Maiboroda, O. Sugakova, Statistics of mixtures with varying concentrations with application to DNA microarray data analysis, Journal of Nonparametric Statistics, 24 (2012), no.1, 201–205.
11. G. J. McLachlan, D. Peel, Finite mixture models, Wiley-Interscience, New York, 2000.
12. E. A. Nadaraya, On Estimating Regression, Theory of Probability and its Applications, 9(1964), no.1, 141–142.
13. P. Schlattmann, Medical Applications of Finite Mixture Models, Springer-Verlag, New York, 2009.
14. O. V. Sugakova, Asymptotics of a kernel estimate for the density of a distribution constructed from observations of a mixture with varying concentration, Theory Probab. Math. Statist., 59(1999), 161–171.
15. G. S. Watson, Smooth regression analysis, Sankhyā: The Indian Journal of Statistics, Series A, 26 (1964), no.4, 359–372.