A Journal "Theory of Probability and Mathematical Statistics"
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



Generalized Nadaraya–Watson estimator for observations from mixture

H. M. Dychko, R. E. Maiboroda

Download PDF

Abstract: A generalization of Nadaraya–Watson kernel regression estimators is considered for estimation by observations from a mixture with varying concentrations. Consistency and asymptotic normality of the estimators are shown.

Keywords: mixture with varying concentrations, nonparametric regression, asymptotic normality, Nadaraya–Watson estimator.

Bibliography:
1. T. Benaglia, D. Chauveau, D. Hunter, D. Young, mixtools: An R Package for Analyzing Finite Mixture Models, Journal of Statistical Software, 32 (2009), no.6, 1–29.
2. A. A. Borovkov, Probability theory, Springer, New York, 2013.
3. S. Faria, G. Soromenhob, Fitting mixtures of linear regressions, Journal of Statistical Computation and Simulation, 80 (2010), no.2, 201–225.
4. B. Grün, F. Leisch, Fitting finite mixtures of linear regression models with varying & fixed effects in R, Compstat 2006 — Proceedings in Computational Statistics (A. Rizzi, M. Vichi), Physica Verlag, Heidelberg, 2006, 853–860.
5. W. Hardle, M. Muller, S. Sperlich, A. Werwatz, Nonparametric and Semiparametric Models, Springer-Verlag, Berlin, 2004.
6. D. Liubashenko, R. Maiboroda, Linear regression by observations from mixtures with varying concentrations, Modern Stochastics: Theory and Applications, 2 (2015), 343–353.
7. P. Macdonald, J. Du, mixdist: Finite Mixture Distribution Models. R package version 0.5-2. Online publication, 2012. — http://www.math.mcmaster.ca/peter/mix/mix.html
8. R. Maiboroda, V. Miroshnichenko, Confidence ellipsoids for regression coefficients by observations from a mixture, Modern Stochastics: Theory and Applications, 5 (2018), no.2, 225–245.
9. R. Maiboroda, O. Sugakova, Estimation and classification by observations form mixture, Kyiv University Publishers, Kyiv, 2008. (Ukrainian)
10. R. Maiboroda, O. Sugakova, Statistics of mixtures with varying concentrations with application to DNA microarray data analysis, Journal of Nonparametric Statistics, 24 (2012), no.1, 201–205.
11. G. J. McLachlan, D. Peel, Finite mixture models, Wiley-Interscience, New York, 2000.
12. E. A. Nadaraya, On Estimating Regression, Theory of Probability and its Applications, 9(1964), no.1, 141–142.
13. P. Schlattmann, Medical Applications of Finite Mixture Models, Springer-Verlag, New York, 2009.
14. O. V. Sugakova, Asymptotics of a kernel estimate for the density of a distribution constructed from observations of a mixture with varying concentration, Theory Probab. Math. Statist., 59(1999), 161–171.
15. G. S. Watson, Smooth regression analysis, Sankhyā: The Indian Journal of Statistics, Series A, 26 (1964), no.4, 359–372.