Theory of Probability and Mathematical Statistics
Exact variations for stochastic heat equations with piecewise constant coefficients and application to parameter estimation
M. Zili, E. Zougar
Download PDF
Abstract: We expand the quartic variations in time and the quadratic variations in space of the solution to a stochastic partial differential equation with piecewise constant coefficients. Both expansions allow us to deduce an estimation method of the parameters appearing in the equation.
Keywords: Quartic and quadratic variations, stochastic partial differential equations, discontinuity, integration techniques, special functions, estimation of parameters.
Bibliography: 1. R. Cantrell, C. Cosner, Diffusion models for population dynamics incorporating individual behavior at boundaries: Applications to refuge design, Theor. Population Biology, 55 (1999), 198–207.
2. Z. Q. Chen, M. Zili, One-dimensional heat equation with discontinuous conductance, Science China Mathematics, 58 (2015), no. 1, 97–108.
3. R. C. Dalang, Extending martingale measure stochastic integral with applications to spatially homogeneous S.P.D.E.’s, Electronic journal of probability, 4 (1999), paper no. 6, 1–29.
4. R. C. Dalang, L. Q. Sardanyons, Stochastic integrals for spde’s: a comparison, Expositiones Mathematicae, 29 (2011), 67–109.
5. A. Lejay, Monte Carlo methods for fissured porous media: a gridless approach, Monte Carlo Methods Appl., 10 (2004), 385–392.
6. S. Nicas, Some results on spectral theory over networks, applied to nerve impulse transmission, In Orthoginal Polynomials and Applications (Bar-le-Duc, 1984), Lect. notes Math., 1171, Springer, 532–541.
7. M. H. Protter, C. B. Morrey, Intermediate Calculus, Springer-Verlag, Berlin, Heidelberg, 1985.
8. J. Pospisil, R. Tribe, Parameter estimates and exact variations for stochastic heat equations driven by space-time white noise, Stochastic Analysis and Applications, 25 (2007), no. 3, 593–611.
9. J. J. Shynk, Probability, random variables and random processes, Wiley, Hoboken, 2013.
10. J. Swanson, Variations of the solution to a stochastic heat equation, Ann. Probab., 35 (2007), no.6, 2122–2159.
11. C. A. Tudor, Analysis of variations for self-similar processes, Springer, 2013.
12. C. Vignat, A generalized Isserlis theorem for location mixtures of Gaussian random vectors, Statistics and Probability Letters, 82 (2012), no. 1, 67–71.
13. M. Zili, Développement asymptotique en temps petits de la solution d’une équation aux dérivées partielles de type parabolique généralisée au sens des distributions-mesures, Note des Comptes Rendues de l’Académie des Sciences de Paris, 321 (1995), Série I, 1049–1052.
14. M. Zili, Construction d’une solution fondamentale d’une équation aux dérivées partielles à coefficients constants par morceaux, Bull. Sci. Math., 123 (1999), 115–155.
15. Mounir Zili and Eya Zougar: One-dimensional stochastic heat equation with discontinuous conductance. Applicable Analysis: An International Journal. March 18, 2018.