A Journal "Theory of Probability and Mathematical Statistics"
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



Exact variations for stochastic heat equations with piecewise constant coefficients and application to parameter estimation

M. Zili, E. Zougar

Download PDF

Abstract: We expand the quartic variations in time and the quadratic variations in space of the solution to a stochastic partial differential equation with piecewise constant coefficients. Both expansions allow us to deduce an estimation method of the parameters appearing in the equation.

Keywords: Quartic and quadratic variations, stochastic partial differential equations, discontinuity, integration techniques, special functions, estimation of parameters.

Bibliography:
1. R. Cantrell, C. Cosner, Diffusion models for population dynamics incorporating individual behavior at boundaries: Applications to refuge design, Theor. Population Biology, 55 (1999), 198–207.
2. Z. Q. Chen, M. Zili, One-dimensional heat equation with discontinuous conductance, Science China Mathematics, 58 (2015), no. 1, 97–108.
3. R. C. Dalang, Extending martingale measure stochastic integral with applications to spatially homogeneous S.P.D.E.’s, Electronic journal of probability, 4 (1999), paper no. 6, 1–29.
4. R. C. Dalang, L. Q. Sardanyons, Stochastic integrals for spde’s: a comparison, Expositiones Mathematicae, 29 (2011), 67–109.
5. A. Lejay, Monte Carlo methods for fissured porous media: a gridless approach, Monte Carlo Methods Appl., 10 (2004), 385–392.
6. S. Nicas, Some results on spectral theory over networks, applied to nerve impulse transmission, In Orthoginal Polynomials and Applications (Bar-le-Duc, 1984), Lect. notes Math., 1171, Springer, 532–541.
7. M. H. Protter, C. B. Morrey, Intermediate Calculus, Springer-Verlag, Berlin, Heidelberg, 1985.
8. J. Pospisil, R. Tribe, Parameter estimates and exact variations for stochastic heat equations driven by space-time white noise, Stochastic Analysis and Applications, 25 (2007), no. 3, 593–611.
9. J. J. Shynk, Probability, random variables and random processes, Wiley, Hoboken, 2013.
10. J. Swanson, Variations of the solution to a stochastic heat equation, Ann. Probab., 35 (2007), no.6, 2122–2159.
11. C. A. Tudor, Analysis of variations for self-similar processes, Springer, 2013.
12. C. Vignat, A generalized Isserlis theorem for location mixtures of Gaussian random vectors, Statistics and Probability Letters, 82 (2012), no. 1, 67–71.
13. M. Zili, Développement asymptotique en temps petits de la solution d’une équation aux dérivées partielles de type parabolique généralisée au sens des distributions-mesures, Note des Comptes Rendues de l’Académie des Sciences de Paris, 321 (1995), Série I, 1049–1052.
14. M. Zili, Construction d’une solution fondamentale d’une équation aux dérivées partielles à coefficients constants par morceaux, Bull. Sci. Math., 123 (1999), 115–155.
15. Mounir Zili and Eya Zougar: One-dimensional stochastic heat equation with discontinuous conductance. Applicable Analysis: An International Journal. March 18, 2018.