Theory of Probability and Mathematical Statistics
A limit theorem for the sums of independent random elements in a Banach space
I. K. Matsak
Download PDF
Abstract: Conditions for the convergence of the maximum of the norms of sums of independent identical distributed random elements in the Banach spaces are studied. Examples of applications to analysis of statistics type ω2 are presented.
Keywords: Сentral limit theorem, Banach spaces, maximum of the norms of sums.
Bibliography: 1. P. Bachelier, Theorie de la speculation, Ann. Ecol. norm., 17 (1900), 21–86.
2. E. Erdos, M. Kac, On certain limit theorems in the theory of probability, Bull. Amer. Math. Soc., 52 (1946), 292–302.
3. A. V. Skorokhod, N. P. Slobodenyuk, Limit theorems for random walks, Naukova dumka, Kyiv, 1970. (Russian)
4. V. Paulauskas, On the distribution of the maximum of consecutive sums independent identically distributed random vectors, Lietuvos matem. rinkinys, 13 (1973), 133–138.
5. V. Paulauskas, S. Steishunas, On the rate of convergence of the maximum distribution of consecutive sums of independent random vectors to limit law, Lietuvos matem. rinkinys, 13 (1973), 139–147.
6. I. K. Matsak, Some limit theorem for maximum sums of independent random processes, Ukr. mat. j., 60 (2008), 1664–1674. (Ukrainian)
7. I. K. Matsak, A. M. Plichko, A. S. Sheludenko, Limit theorems for the maximum of sums of independent random processes, Ukr. mat. j., 70 (2018), 506–518. (Ukrainian)
8. N. N. Vachania, B. I. Tarieladze, S. A. Chobanyan, Probability distributions in Banach spaces, Nauka, Moscow, 1985. (Russian)
9. M. Ledoux, M. Talagrand, Probability in Banach Spaces, Springer, Berlin, 1991.
10. X. Fernique, Regularite des trajectoires des fonctions aleatoires gaussiennes, Lect. Not. Math., 480 (1975), 1–96.
11. G. Polya, G. Szego, Problems and theorems from analysis, vol. 1, Springer-Verlag, Berlin, Heidelberg, New York, 1964.
12. P. Billingsley, Convergence of probability measures, John Wiley and Sons, New York, London, Sydney, Toronto, 1968.
13. J. Lamperty, Probability, Benjamin, New York, 1966.
14. P. Levy, Processus stochastiques et mouvement brownien, Gauthier-Villars, Paris, 1937.
15. Z. Ciesielsky, Holder condition for realizations of Gaussian processes, TAMS, 99 (1961), 40315. Z. Ciesielsky, Holder condition for realizations of Gaussian processes, TAMS, 99 (1961), 40315. Z. Ciesielsky, Holder condition for realizations of Gaussian processes , TAMS, 99 (1961), 40315. Z. Ciesielsky, Holder condition for realizations of Gaussian processes, TAMS, 99 (1961), 403–413.
16. J. Lindenstrauss, L. Tzafriri, Classical Banach spaces , vol. 1, Springer-Verlag, Berlin, Heidelberg, New York, 1977.
17. I. I. Gihman, A. V. Skorokhod, The Theory of Stochastic Processes , vol. 1, Springer-Verlag, Berlin, Heidelberg, 2004.
18. L. N. Bolshev, N. V. Smirnov, Tables of mathematical statistics , Nauka, Moscow, 1983. (Russian)
19. A. S. Sheludenko, Limit theorem for some statistics of type Kolmogorov-Smirnov, Bulletin of Taras Shevchenko National University of Kyiv, ser. Mathematics. Mechanics, 38 (2017), no. 4, 54–58. (Ukrainian)