Theory of Probability and Mathematical Statistics
Improved local approximation for multidimensional diffusions: the G-rates
S. Bodnarchuk, D. Ivanenko, A. Kohatsu-Higa, A. Kulik
Download PDF
Abstract: In this article, we consider the problem of improving the local approximations for multidimensional diffusions. In particular, our proposed explicit approximation improves the Milshtein approximation. We also provide a semi-explicit convergence rate estimate (we call it G-rate) for the proposed local approximation. The main error term in the difference of densities is bounded by a polynomial multiplied by a Gaussian density and the remainder is exponentially small as time goes to zero.
Keywords: Expansions, Stochastic Differential Equations, Total Variation Distance
Bibliography: 1. Y. Ait-Sahahia. Closed-form likelihood expansions for multivariate diffusions, Annals of Statistics, 36 (2008), 906–937.
2. A. Alfonsi, B. Jourdain, A. Kohatsu-Higa. Optimal transport bounds between the time-marginals of a multidimensional diffusion and its Euler scheme, Electronic Journal of Probability, 20 (2015), 1–31.
3. R. Azencott. Densit´e des diffusions en temps petit: d´eveloppements asymptotiques. I, Seminar on probability, XVIII, Lecture Notes in Math. 1059, Springer, Berlin, 1984, 402–498.
4. O. E. Barndorff-Nielsen, D. R. Cox. Asymptotic Techniques for Use in Statistics, Chapman and Hall, 1989.
5. A. B. Cruzeiro, P. Malliavin, A. Thalmaier. Geometrization of Monte-Carlo numerical analysis of an elliptic operator: strong approximation, C. R. Math. Acad. Sci. Paris, 338 (2004), 481–486.
6. A. Friedman. Partial differential equations of parabolic type, Dover Publications, Inc., 1964.
7. P. E. Kloeden, E. Platen. Numerical Solution of Stochastic Differential Equations, Series: Stochastic Modelling and Applied Probability, Vol. 23. 1992.
8. D. O. Ivanenko, A. Kohatsu-Higa, A. M. Kulik, LA(M)N property for diffusion models with low regularity coefficients, Manuscript.
9. S. Kusuoka. Approximation of expectation of diffusion process and mathematical finance, Taniguchi Conference on Mathematics Nara ’98, Adv. Stud. Pure Math., Math. Soc. Japan, Tokyo, 131 (2001), 147–165.
10. K. Oshima, J. Teichmann, D. Veluscek. A new extrapolation method for weak approximation schemes with applications, Ann. Appl. Probab., 22 (2012), 1008–1045.
11. R. Ramer. On nonlinear transformations of Gaussian measures. J. Funct. Anal., 1974, 15, 166–187.
12. A. Kulik. Integral representation for functionals on a space with a smooth measure, Theory of stochastic processes, 3 (1997), 235–243.
13. A. ¨Ust¨unel, M. Zakai. The change of variables formula on Wiener space, S´eminaire de probabilites de Strasbourg, 31 (1997), 24–39.
14. S. Watanabe. Short time asymptotic problems in Wiener functional integration theory. Applications to heat kernels and index theorems. Stochastic analysis and related topics, II (Silivri, 1988), Lecture Notes in Math., 1444, Springer, Berlin, 1990, 1–62.
15. S. Watanabe. Analysis of Wiener functionals (Malliavin calculus) and its applications to heat kernels, Ann. Probab., 15 (1987), 1–39.
16. N. Yoshida. Asymptotic expansions of maximum likelihood estimators for small diffusions via the theory of Malliavin–Watanabe, Probab. Theory Related Fields, 92 (1992), 275–311.