A Journal "Theory of Probability and Mathematical Statistics"
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



Tests on quantiles of mixture components' distributions

R. E. Maiboroda, O. V. Sugakova

Download PDF

Abstract: The hypotheses testing problem is considered for hypotheses on quantiles of different components of a mixture with varying concentrations.

Keywords:

Bibliography:
f medians or interquartile ranges can be considered as the examples. Estimates for the quantiles are presented, their
asymptotic normality is demonstrated. Asymptotic confidence ellipsoids and tests for linear hypotheses are constructed. Simulation results are presented.
Bibliography: 1. F. Autin, C. Pouet, Minimax rates over Besov spaces in ill-conditioned mixture-models with varying mixing-weights, Journal of Statistical Planning and Inference, 146 (2014), 20-30.
2. P. J. Bickel, M. J. Wichura, Convergence criteria for multipapameter stochastic processes and some applications, Ann. Math. Statist., 42 (1971), no. 5, 1656-1670.
3. A. Doronin, R. Maiboroda, Testing hypotheses on moments by observations from a mixture with varying concentrations, Modern Stochastics: Theory and Applications, 1 (2014), no. 2, 195-209.
4. M. Hollander, D. A. Wolfe, E. Chicken, Nonparametric Statistical Methods, John Wiley & Sons, Hoboken, 2014.
5. R. E. Maiboroda, Statistical analysis of mixtures, Kyiv University Publishers, Kyiv, 2003. (In Ukrainian)
6. R. E. Maiboroda, O. V. Sugakova, Esitmation and classication by observations from a mixture, Kyiv University Publishers, Kyiv, 2008. (In Ukrainian)
7. R. E. Maiboroda, A test for the homogeneity of mixtures with varying concentrations, Ukrainian Mathematical Journal, 52 (2000), no. 8, 1256-1263.
8. G. J. McLachlan, D. Peel, Finite mixture models, Wiley-Interscience, 2000.
9. G. J. McLachlan, K.-A. Do, C. Ambroise, Analyzing Microarray Gene Expression Data, Wiley-Interscience, 2004.
10. G. J. Myatt, W. P. Johnson, Making Sense of Data I: A Practical Guide to Exploratory Data Analysis and Data Mining, Willey, Hoboken, 2014.
11. A. Yu. Ryzhov, A test of the hypothesis about the homogeneity of components of a mixture with varying concentrations by using censored data, Theory Probab. Math. Statist., 72 (2006), 145-155.
12. J. Shao, Mathematical statistics, Springer-Verlag, New York, 1998.
13. J. W. Tukey, Exploratory Data Analysis, Addison Wesley, Reading MA, 1977.