A Journal "Theory of Probability and Mathematical Statistics"
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



Properties of strictly {\LARGE $\varphi$}-sub-Gaussian quasi shot noise processes

O. I. Vasylyk

Download PDF

Abstract: In this paper, there are studied properties of a strictly $\varphi$-sub-Gaussian quasi shot noise process $ X(t)=\int_{-\infty}^{+\infty}g(t,u)d\xi(u),$ $t\in\R$, generated by the process $\xi$ and the response function~$g$. There are obtained conditions, under which such random processes belong to some weighted spaces of continuous functions. Estimates for distributions of suprema of strictly $\varphi$-sub-Gaussian quasi shot noise processes are derived.

Keywords:

Bibliography:
1. V. V. Buldygin, and Yu. V. Kozachenko, Metric Characterization of Random Variables and Random Processes, American Mathematical Society, Providence, RI, 257 p., 2000.
2. N. Campbell, The study of discontinuous phenomena, Proc. Cambr. Phil. Soc. 15, 117-136; Discontinuities in light emission, Proc. Cambr. Phil. Soc. 15, 310-328, 1909.
3. I. V. Dariychuk, Yu. V. Kozachenko, and M.M. Perestyuk, Stochastic processes from Orlicz spaces, Chernivtsi: ''Zoloti lytavry'', 212 p., 2011. (In Ukrainian)
4. I. V. Dariychuk, Yu. V. Kozachenko, Some properties of pre-Gaussian shot noise processes, Stochastic Analysis and Random Dynamics. International Conference. Abstracts, Lviv, Ukraine,57-59, 2009.
5. I. V. Dariychuk, Yu. V. Kozachenko, The distribution of the supremum of $\Theta$-pre-Gaussian shot noise processes, Theory of Probability and Mathematical Statistics), no. 80, 85-100, 2010.
6. I. I. Gikhman, A. V. Skorokhod, Introduction to the Theory of Random Processes, Ì.: Nauka, 570p., 1977.
7. R. Giuliano Antonini, Yu. V. Kozachenko, T. Nikitina, Space of $\phi$-sub-Gaussian random variables, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 27, 92-124, 2003.
8. D. T. Koops, O. J. Boxma, and M. R. H. Mandjes, Networks of ·/G/$\infty$ Queues with Shot-Noise-Driven Arrival Intensities, Queueing Systems, August 2016, DOI: 10.1007/s11134-017-9520-7.
9. Yu. V. Kozachenko, E. I. Ostrovsky, Banach spaces of random variables of sub-Gaussian type, Theory of Probability and Mathematical Statistics, no. 32, 42-53, 1985.
10. Yu. Kozachenko, A. Pashko, Accuracy and Reliability of Simulation of Random Processes and Fields in Uniform Metrics, Kyiv, 216 p., 2016. (In Ukrainian)
11. Yu. V. Kozachenko, M. M. Perestyuk, O. I. Vasylyk, On Uniform Convergence of Wavelet Expansions of $\phi$-sub-Gaussian Random Process, Random Operators and Stochastic Equations, 14, no.3, 209-232, 2006.
12. Yu. Kozachenko, O. Vasylyk, T. Sottinen, Path space large deviations of a large buer with Gaussian input trac, Queueing Systems Theory Appl. 42, 113-129, 2002.
13. Yu. V. Kozachenko, O. I. Vasilik, On the distribution of suprema of $Sub_{\phi}(\Omega
)$ random processes, Theory of Stochastic Processes, 4(20), issue 1-2, 147-160, 1998.
14. Yu. V. Kozachenko, O. I. Vasilik, Stochastic processes of the classes $V (\phi,\psi)$, Theory of Probability and Mathematical Statistics, 63, 109-121, 2001.
15. Yu. V. Kozachenko, O. I. Vasylyk, Sample pathes continuity and estimates of distributions of the increments of separable stochastic processes from the class $V (\phi,\psi)$, dened on a compact set, Bulletin of the University of Kiev, Series: Physics and Mathematics, issue 2, 45-50, 2004.(In Ukrainian)
16. Yu. Kozachenko, R. Yamnenko, O. Vasylyk, Upper estimate of overrunning by $Sub_{\phi}(\Omega
)$ random process the level specied by continuous function, Random Oper. Stoch. Equ., 13, no. 2, 111-128, 2005.
17. Yu. V. Kozachenko, R. E.Yamnenko, O. I. Vasylyk, $\phi$-sub-Gaussian random process, Kyiv: Vydavnycho-Poligrachnyi Tsentr ''Kyivskyi Universytet'', 231 p., 2008. (In Ukrainian)
18. M. A. Krasnosel'skii, Ya. B. Rutickii, Convex Functions and Orlicz Spaces. Moscow, 1958 (in Russian). English translation: P.Noordho Ltd, Groningen, 249p., 1961.
19. S. O. Rice, Mathematical analysis of random noise, The Bell System Technical Journal, 23, 282-332, 1944.
20. S. O. Rice, Mathematical analysis of random noise, The Bell System Technical Journal, 24, 46-156, 1945.
21. J. Rice, On generalized shot noise, Advances in Applied Probability, 9, 553-565, 1977.
22. T. Schmidt, Catastrophe insurance modeled by shot-noise processes, Risks, ISSN 2227-9091, MDPI, Basel, 2, Iss. 1, 3-24, 2014, http://dx.doi.org/10.3390/risks2010003.
23. T. Schmidt, Shot-noise processes in nance, arXiv:1612.06616v1, 2016.
24. W. Schottky, Uber spontane Stromschwankungen in verschiedenen Elektrizitatsleitern, Annalen der Physik, 362(23), 541-567, 1918.
25. O. I. Vasylyk, Strictly $\phi$-sub-Gaussian quasi shot noise processes, Statistics, Optimization and Information Computing, 5, 109-120, 2017.