Theory of Probability and Mathematical Statistics
Properties of strictly {\LARGE $\varphi$}-sub-Gaussian quasi shot noise processes
O. I. Vasylyk
Download PDF
Abstract: In this paper, there are studied properties of a strictly $\varphi$-sub-Gaussian quasi shot noise process $ X(t)=\int_{-\infty}^{+\infty}g(t,u)d\xi(u),$ $t\in\R$, generated by the process $\xi$ and the response function~$g$. There are obtained conditions, under which such random processes belong to some weighted spaces of continuous functions. Estimates for distributions of suprema of strictly $\varphi$-sub-Gaussian quasi shot noise processes are derived.
Keywords:
Bibliography: 1. V. V. Buldygin, and Yu. V. Kozachenko, Metric Characterization of Random Variables and Random Processes, American Mathematical Society, Providence, RI, 257 p., 2000.
2. N. Campbell, The study of discontinuous phenomena, Proc. Cambr. Phil. Soc. 15, 117-136; Discontinuities in light emission, Proc. Cambr. Phil. Soc. 15, 310-328, 1909.
3. I. V. Dariychuk, Yu. V. Kozachenko, and M.M. Perestyuk, Stochastic processes from Orlicz spaces, Chernivtsi: ''Zoloti lytavry'', 212 p., 2011. (In Ukrainian)
4. I. V. Dariychuk, Yu. V. Kozachenko, Some properties of pre-Gaussian shot noise processes, Stochastic Analysis and Random Dynamics. International Conference. Abstracts, Lviv, Ukraine,57-59, 2009.
5. I. V. Dariychuk, Yu. V. Kozachenko, The distribution of the supremum of $\Theta$-pre-Gaussian shot noise processes, Theory of Probability and Mathematical Statistics), no. 80, 85-100, 2010.
6. I. I. Gikhman, A. V. Skorokhod, Introduction to the Theory of Random Processes, Ì.: Nauka, 570p., 1977.
7. R. Giuliano Antonini, Yu. V. Kozachenko, T. Nikitina, Space of $\phi$-sub-Gaussian random variables, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 27, 92-124, 2003.
8. D. T. Koops, O. J. Boxma, and M. R. H. Mandjes, Networks of ·/G/$\infty$ Queues with Shot-Noise-Driven Arrival Intensities, Queueing Systems, August 2016, DOI: 10.1007/s11134-017-9520-7.
9. Yu. V. Kozachenko, E. I. Ostrovsky, Banach spaces of random variables of sub-Gaussian type, Theory of Probability and Mathematical Statistics, no. 32, 42-53, 1985.
10. Yu. Kozachenko, A. Pashko, Accuracy and Reliability of Simulation of Random Processes and Fields in Uniform Metrics, Kyiv, 216 p., 2016. (In Ukrainian)
11. Yu. V. Kozachenko, M. M. Perestyuk, O. I. Vasylyk, On Uniform Convergence of Wavelet Expansions of $\phi$-sub-Gaussian Random Process, Random Operators and Stochastic Equations, 14, no.3, 209-232, 2006.
12. Yu. Kozachenko, O. Vasylyk, T. Sottinen, Path space large deviations of a large buer with Gaussian input trac, Queueing Systems Theory Appl. 42, 113-129, 2002.
13. Yu. V. Kozachenko, O. I. Vasilik, On the distribution of suprema of $Sub_{\phi}(\Omega
)$ random processes, Theory of Stochastic Processes, 4(20), issue 1-2, 147-160, 1998.
14. Yu. V. Kozachenko, O. I. Vasilik, Stochastic processes of the classes $V (\phi,\psi)$, Theory of Probability and Mathematical Statistics, 63, 109-121, 2001.
15. Yu. V. Kozachenko, O. I. Vasylyk, Sample pathes continuity and estimates of distributions of the increments of separable stochastic processes from the class $V (\phi,\psi)$, dened on a compact set, Bulletin of the University of Kiev, Series: Physics and Mathematics, issue 2, 45-50, 2004.(In Ukrainian)
16. Yu. Kozachenko, R. Yamnenko, O. Vasylyk, Upper estimate of overrunning by $Sub_{\phi}(\Omega
)$ random process the level specied by continuous function, Random Oper. Stoch. Equ., 13, no. 2, 111-128, 2005.
17. Yu. V. Kozachenko, R. E.Yamnenko, O. I. Vasylyk, $\phi$-sub-Gaussian random process, Kyiv: Vydavnycho-Poligrachnyi Tsentr ''Kyivskyi Universytet'', 231 p., 2008. (In Ukrainian)
18. M. A. Krasnosel'skii, Ya. B. Rutickii, Convex Functions and Orlicz Spaces. Moscow, 1958 (in Russian). English translation: P.Noordho Ltd, Groningen, 249p., 1961.
19. S. O. Rice, Mathematical analysis of random noise, The Bell System Technical Journal, 23, 282-332, 1944.
20. S. O. Rice, Mathematical analysis of random noise, The Bell System Technical Journal, 24, 46-156, 1945.
21. J. Rice, On generalized shot noise, Advances in Applied Probability, 9, 553-565, 1977.
22. T. Schmidt, Catastrophe insurance modeled by shot-noise processes, Risks, ISSN 2227-9091, MDPI, Basel, 2, Iss. 1, 3-24, 2014, http://dx.doi.org/10.3390/risks2010003.
23. T. Schmidt, Shot-noise processes in nance, arXiv:1612.06616v1, 2016.
24. W. Schottky, Uber spontane Stromschwankungen in verschiedenen Elektrizitatsleitern, Annalen der Physik, 362(23), 541-567, 1918.
25. O. I. Vasylyk, Strictly $\phi$-sub-Gaussian quasi shot noise processes, Statistics, Optimization and Information Computing, 5, 109-120, 2017.