A Journal "Theory of Probability and Mathematical Statistics"
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



Testing hypotheses for measures with different masses: Four optimization problems

A. A. Gushchin, S. S. Leshchenko

Download PDF

Abstract: We consider a problem similar to testing two composite hypotheses, where measures constituting the hypotheses are not

Keywords: Convex duality, testing hypotheses. saddle point.

Bibliography:
and may have different masses. Then it is naturally to consider four different optimization problems. To
characterize optimal solutions we introduce corresponding dual optimization problems. Our main goal is to find sufficient
conditions for the existence of saddle points in each problem.
Bibliography: 1. V. Baumann, Eine parameterfreie Theorie der ung ̈unstigsten Verteilungen f ̈ur das Testen von Hypothesen, Zeitschrift f ̈ur Wahrscheinlichkeitstheorie und Verwandte Gebiete, 11 (1968), no. 1, 41–60.
2. J. Cvitani ́c, I. Karatzas, Generalized Neyman-Pearson lemma via convex duality, Bernoulli, 7 (2001), no. 1, 79–97.
3. F. Delbaen, W. Schachermayer, The Mathematics of Arbitrage, Springer, Berlin, Heidelberg, 2006.
4. H. F ̈ollmer, P. Leukert, Quantile hedging, Finance & Stochastics, 3 (1999), no. 3, 251–273.
5. H. F ̈ollmer, P. Leukert, Efficient hedging: Cost versus shortfall risk, Finance & Stochastics, 4 (2000), no. 2, 117–146.
6. A. A. Gushchin, A characterization of maximin tests for two composite hypotheses, Mathematical Methods of Statistics, 24 (2015), no. 2, 110–121.
7. A. A. Gushchin, E. Mordecki, Bounds on option prices for semimartingale market models, Proceedings of the Steklov Institute of Mathematics, 237 (2002), 73–113.
8. D. Hern ́andez-Hern ́andez, E. Trevino-Aguilar, Efficient hedging of European options with robust convex loss functionals: A dual-representation formula, Mathematical Finance, 21 (2011), no. 1, 99–115.
9. O. Krafft, H. Witting, Optimale Tests und ung ̈unstigste Verteilungen, Zeitschrift f ̈ur Wahrscheinlichkeitstheorie und Verwandte Gebiete, 7 (1967), no. 4, 289–302.
10. E. L. Lehmann, Testing Statistical Hypotheses, Wiley, New York, 1959.
11. A. Melnikov, A. Nosrati, Equity-Linked Life Insurance: Partial Hedging Methods, Chapman & Hall/CRC, Boca Raton, 2017.
12. Y. Nakano, Minimizing coherent risk measures of shortfall in discrete-time models under cone constraints, Applied Mathematical Finance, 10 (2003), no. 2, 163–181.
13. Y. Nakano, Efficient hedging with coherent risk measure, Journal of Mathematical Analysis and Applications 293 (2004), no. 1, 345–354.
14. Y. Nakano, Partial hedging for defaultable claims, Advances in Mathematical Economics, 14 (2011), 127–145.
15. A. A. Novikov, Hedging of options with a given probability, Theory of Probability and Its Applications, 43 (1999), no. 1, 135–143.
16. B. Rudloff, Convex hedging in incomplete markets, Applied Mathematical Finance, 14 (2007), no. 5, 437–452.
17. B. Rudloff, Coherent hedging in incomplete markets, Quantitative Finance, 9 (2009), no. 2, 197–206.
18. R. T. Rockafellar, Extension of Fenchel’s duality theorem for convex functions, Duke Mathematical Journal, 33 (1966), no. 1, 81–89.
19. E. Trevi ̃no Aguilar, Robust efficient hedging for American options: The existence of worst case probability measures, Statistics & Decisions, 27 (2009), no. 1, 1–23.
20. E. Trevi ̃no Aguilar, Duality in a problem of static partial hedging under convex constraints, SIAM Journal on Financial Mathematics, 6 (2015), 1152–1170.