Theory of Probability and Mathematical Statistics
Testing hypotheses for measures with different masses: Four optimization problems
A. A. Gushchin, S. S. Leshchenko
Download PDF
Abstract: We consider a problem similar to testing two composite hypotheses, where measures constituting the hypotheses are not
Keywords: Convex duality, testing hypotheses. saddle point.
Bibliography: and may have different masses. Then it is naturally to consider four different optimization problems. To
characterize optimal solutions we introduce corresponding dual optimization problems. Our main goal is to find sufficient
conditions for the existence of saddle points in each problem.
Bibliography: 1. V. Baumann, Eine parameterfreie Theorie der ung ̈unstigsten Verteilungen f ̈ur das Testen von Hypothesen, Zeitschrift f ̈ur Wahrscheinlichkeitstheorie und Verwandte Gebiete, 11 (1968), no. 1, 41–60.
2. J. Cvitani ́c, I. Karatzas, Generalized Neyman-Pearson lemma via convex duality, Bernoulli, 7 (2001), no. 1, 79–97.
3. F. Delbaen, W. Schachermayer, The Mathematics of Arbitrage, Springer, Berlin, Heidelberg, 2006.
4. H. F ̈ollmer, P. Leukert, Quantile hedging, Finance & Stochastics, 3 (1999), no. 3, 251–273.
5. H. F ̈ollmer, P. Leukert, Efficient hedging: Cost versus shortfall risk, Finance & Stochastics, 4 (2000), no. 2, 117–146.
6. A. A. Gushchin, A characterization of maximin tests for two composite hypotheses, Mathematical Methods of Statistics, 24 (2015), no. 2, 110–121.
7. A. A. Gushchin, E. Mordecki, Bounds on option prices for semimartingale market models, Proceedings of the Steklov Institute of Mathematics, 237 (2002), 73–113.
8. D. Hern ́andez-Hern ́andez, E. Trevino-Aguilar, Efficient hedging of European options with robust convex loss functionals: A dual-representation formula, Mathematical Finance, 21 (2011), no. 1, 99–115.
9. O. Krafft, H. Witting, Optimale Tests und ung ̈unstigste Verteilungen, Zeitschrift f ̈ur Wahrscheinlichkeitstheorie und Verwandte Gebiete, 7 (1967), no. 4, 289–302.
10. E. L. Lehmann, Testing Statistical Hypotheses, Wiley, New York, 1959.
11. A. Melnikov, A. Nosrati, Equity-Linked Life Insurance: Partial Hedging Methods, Chapman & Hall/CRC, Boca Raton, 2017.
12. Y. Nakano, Minimizing coherent risk measures of shortfall in discrete-time models under cone constraints, Applied Mathematical Finance, 10 (2003), no. 2, 163–181.
13. Y. Nakano, Efficient hedging with coherent risk measure, Journal of Mathematical Analysis and Applications 293 (2004), no. 1, 345–354.
14. Y. Nakano, Partial hedging for defaultable claims, Advances in Mathematical Economics, 14 (2011), 127–145.
15. A. A. Novikov, Hedging of options with a given probability, Theory of Probability and Its Applications, 43 (1999), no. 1, 135–143.
16. B. Rudloff, Convex hedging in incomplete markets, Applied Mathematical Finance, 14 (2007), no. 5, 437–452.
17. B. Rudloff, Coherent hedging in incomplete markets, Quantitative Finance, 9 (2009), no. 2, 197–206.
18. R. T. Rockafellar, Extension of Fenchel’s duality theorem for convex functions, Duke Mathematical Journal, 33 (1966), no. 1, 81–89.
19. E. Trevi ̃no Aguilar, Robust efficient hedging for American options: The existence of worst case probability measures, Statistics & Decisions, 27 (2009), no. 1, 1–23.
20. E. Trevi ̃no Aguilar, Duality in a problem of static partial hedging under convex constraints, SIAM Journal on Financial Mathematics, 6 (2015), 1152–1170.