A Journal "Theory of Probability and Mathematical Statistics"
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



Asymptotic properties of periodogram parameter estimators for a trigonometric observation model on the plane

A. V. Ivanov, O. V. Lymar

Download PDF

Abstract: The simplest sinusoidal model of symmetric texture surface is considered, which is observed on the background of homogeneous and isotropic Gaussian, in particular, strongly dependent random field on the plane. Strong consistency and asymptotic normality of periodogram amplitude and angular frequencies estimators of the specified trigonometric regression model are proved.

Keywords:

Bibliography:
1. J. M. Francos, A. Z. Meiri, B. Porat, A united texture model based on 2-D Wald type decomposition, IEEE Transactions on Signal Processing, 17 (1993), no. 41, 2665-2678.
2. T. Yuan, T. Subba Rao, Spectrum estimation for random elds with application to Markov modelling and texture classication, Markov Random Fields, Theory and Applications (R. Chellappa, A. K. Jain, eds.), Academic Press, New York, 1993.
3. H. Zhang, V. Mandrekar, Estimation of hidden frequencies for 2D stationary processes, Journal of Time Series Analysis, (2001), no. 22, 613-629.
4. S. Nandi, D. Kundu, R. K. Srivastava, Noise space decomposition method for two-dimensional sinusoidal model, Computational Statistics and Data Analysis, 58 (2013), 147-161.
5. P. Malliavan, Sur la norte d'une matrice circulante Gaussienne, Comptes Rendus de l'Academie des Sciences, Serie 1 (Mathematique), (1994), 45-49.
6. P. Malliavan, Estimation d'un signal Lorentzien, Comptes Rendus de l'Academie des Sciences, Serie 1 (Mathematique), (1994), 991-997.
7. A. V. Ivanov, O. V. Maliar, Consistency of the least squares estimator of the textured surface sinusoidal model parameters, Theor. Probability and Math. Statist., 97 (2017), 72-82.
8. A. V. Ivanov, O. V. Lymar, Asymptotic normality of the least squares estimator of twodimensional sinusoidal observation model parameters, Theor. Probability and Math. Statist., 100 (2019), 102-122.
9. M. I. Yadrenko, Spectral Theory of Random Fields, Optimization Software, New York, 1983.
10. A. V. Ivanov, N. N. Leonenko, Statistical Analysis of Random Fields, Kluwer Academic Publishers, Dordecht, Boston, London, 1989.
11. G. P. Hrechka, A. Ya. Dorogovtsev, On asymptotic properties of periodogram estimator of harmonic oscillation frequency and amplitude, Computing and Applied Math., 28 (1975), 18-31.
12. B. M. Zhurakovskyi, A. V. Ivanov, Periodogram estimator properties of the parameters of the regression model with strongly dependent noise, Research bulletin of NTUU "KPI (2012), no. 4,59-65.
13. P. S. Knopov, G. D. Bila, Periodogram estimates in the nonlinear regression models with strongly dependent noise, Kibernetika i Sistemny Analiz, (2013), no. 4, 163-172.
14. A. V. Ivanov, N. Leonenko, M. D. Ruiz-Medina, I. N. Savich, Limit theorems for weighted nonlinear transformations of Gaussian stationary processes with singular spectra, Annals Prob., 41 (2013), no. 2, 1088-1114.
15. U. Grenander, On the estimation of regression coucients in the case of an autocorrelated disturbance, Ann. Math. Statist., 25 (1954), no. 2, 252-272.
16. I. A. Ibragimov, Y. A. Rozanov, Gaussian Random Processes, Springer-Verlag, New York, 1978.
17. T. Alodat, A. Olenko, Weak convergence of weighted additive functionals of long-range dependent elds, Theor. Probability and Math. Statist., 97 (2017), 9-23.
18. V. Anh, N. Leonenko, A. Olenko, V. Vaskovich, On rate of convergence in non-central limit theorems, Bernoulli, 25 (2019), no. 4A, 2920-2948.
19. N. Leonenko, A. Olenko, Tauberian and Abelian theorems for long-range dependent random elds, Comp. Appl. Prob., 15 (2013), 715-742.