Theory of Probability and Mathematical Statistics
Limit theorems for singular Skorohod integrals
D. Bell, R. Bolanos, D. Nualart
Link
Abstract: In this paper we prove the convergence in distribution of sequences of It\^o and Skorohod integrals with integrands having singular asymptotic behavior. These sequences include stochastic convolutions and generalize the example $\sqrt n\int_0^1 t^n B_t dB_t$ first studied by Peccati and Yor in 2004.
Keywords: Skorohod integral, Malliavin calculus, convergence in law, stochastic convolution.
Bibliography: 1. D. Bell. The Malliavin calculus, Dover Publications, 2006.
2. J. Jacod and A. N. Shiryaev. Limit Theorems for Stochastic Processes, Springer, Berlin, 1987.
3. I. Nourdin and D. Nualart. Central limit theorems for multiple Skorohod integrals. J. Theoret. Probab. 23 (2010), no. 1, 39-64.
4. I. Nourdin, D. Nualart and G Peccati. Quantitative stable limit theorems on the Wiener space. Ann. Probab. 44 (2016), no. 1, 1-41.
5. D. Nualart. The Malliavin calculus and related topics. Second edition, Springer, Berlin, 2006.
6. L. Pratelli and P. Rigo. Total variation bounds for Gaussian functionals. Stoch. Proc. Appl. 129 (2019), 2231-2248.
7. L. Pratelli and P. Rigo. Convergence in total variation to a mixture of Gaussian laws. Mathematics, Special Issue Stochastic Processes with Applications, 6, 99, 2018.
8. I. Nourdin and G. Poly. Convergence in total variation on Wiener Chaos. Stochastic Process. Appl. 123 (2013), 651-674.
9. G. Peccati and M.S. Taqqu. Stable convergence of multiple Wiener-It^o integrals. J. Theoret. Probab. 21 (2008), no. 3, 527-570.
10. G. Peccati and M. Yor. Four limit theorems for quadratic functionals of Brownian motion and Brownian bridge. In: Asymptotic Methods in Stochastics, AMS, Fields Institute Communication Series, 75-87, 2004.
11. R. L. Wheeden and A. Zygmund. Measure and integral an Introduction to real analysis. Second Edition.
12. P. Billingsley. Convergence of Probability Measures. Second Edition.
13. G.D Prato and J Zabczyk. Stochastic equations in innite dimensions. Second edition, Cambridge University Press, 2014.