A Journal "Theory of Probability and Mathematical Statistics"
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



Limit theorems for singular Skorohod integrals

D. Bell, R. Bolanos, D. Nualart

Link

Abstract: In this paper we prove the convergence in distribution of sequences of It\^o and Skorohod integrals with integrands having singular asymptotic behavior. These sequences include stochastic convolutions and generalize the example $\sqrt n\int_0^1 t^n B_t dB_t$ first studied by Peccati and Yor in 2004.

Keywords: Skorohod integral, Malliavin calculus, convergence in law, stochastic convolution.

Bibliography:
1. D. Bell. The Malliavin calculus, Dover Publications, 2006.
2. J. Jacod and A. N. Shiryaev. Limit Theorems for Stochastic Processes, Springer, Berlin, 1987.
3. I. Nourdin and D. Nualart. Central limit theorems for multiple Skorohod integrals. J. Theoret. Probab. 23 (2010), no. 1, 39-64.
4. I. Nourdin, D. Nualart and G Peccati. Quantitative stable limit theorems on the Wiener space. Ann. Probab. 44 (2016), no. 1, 1-41.
5. D. Nualart. The Malliavin calculus and related topics. Second edition, Springer, Berlin, 2006.
6. L. Pratelli and P. Rigo. Total variation bounds for Gaussian functionals. Stoch. Proc. Appl. 129 (2019), 2231-2248.
7. L. Pratelli and P. Rigo. Convergence in total variation to a mixture of Gaussian laws. Mathematics, Special Issue Stochastic Processes with Applications, 6, 99, 2018.
8. I. Nourdin and G. Poly. Convergence in total variation on Wiener Chaos. Stochastic Process. Appl. 123 (2013), 651-674.
9. G. Peccati and M.S. Taqqu. Stable convergence of multiple Wiener-It^o integrals. J. Theoret. Probab. 21 (2008), no. 3, 527-570.
10. G. Peccati and M. Yor. Four limit theorems for quadratic functionals of Brownian motion and Brownian bridge. In: Asymptotic Methods in Stochastics, AMS, Fields Institute Communication Series, 75-87, 2004.
11. R. L. Wheeden and A. Zygmund. Measure and integral an Introduction to real analysis. Second Edition.
12. P. Billingsley. Convergence of Probability Measures. Second Edition.
13. G.D Prato and J Zabczyk. Stochastic equations in in nite dimensions. Second edition, Cambridge University Press, 2014.