A Journal "Theory of Probability and Mathematical Statistics"
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



Ergodicity of jump diffusions driven by multivariate nonlinear Hawkes processes

C. Dion, S. Lemler, E. Loecherbach

Link

Abstract: In this paper, we introduce a new class of processes which are diffusions with jumps driven by a multivariate nonlinear Hawkes process. Our goal is to study their long-time behavior. In the case of exponential memory kernels for the underlying Hawkes process we establish conditions for the positive Harris recurrence of the couple $(X,Y )$, where $X$ denotes the diffusion process and $Y$ the piecewise deterministic Markov process (PDMP) defining the stochastic intensity of the driving Hawkes. As a direct consequence of the Harris recurrence, we obtain the ergodic theorem for $X.$ Furthermore, we provide sufficient conditions under which the process is exponentially $\beta-$mixing.

Keywords: Diffusions with jumps, nonlinear Hawkes process, piecewise deterministic Markov processes (PDMP), ergodicity, Foster--Lyapunov drift criteria, $\beta$-mixing

Bibliography:
1. D. Applebaum, Levy processes and Stochastic Calculus, Cambridge University Press, 2009.
2. E. Bacry, S. Delattre, M. Homann, and J-F Muzy, Some limit theorems for Hawkes processes and application to financial statistics, Stochastic Process. Appl., 123(2013), no. 7, 2475-2499.
3. E. Bacry and J-F Muzy, Second order statistics characterization of Hawkes processes and non-parametric estimation, arXiv preprint arXiv:1401.0903, 2014.
4. M. Benaim, S. Le Borgne, F. Malrieu, and P-A Zitt, Qualitative properties of certain piecewise deterministic Markov processes, Ann. Inst. H. Poincare Probab. Statist., 51 (2015), no. 3, 1040-1075.
5. M. Bonde Raad, Renewal time points for Hawkes processes, arXiv, 2019.
6. P. Bremaud and L. Massoulie, Stability of nonlinear Hawkes processes, Ann. Probab., 1996, 1563-1588.
7. S. Chen, A. Shojaie, E. Shea-Brown, and D. Witten. The multivariate Hawkes process in high dimensions: Beyond mutual excitation, arXiv preprint arXiv:1707.04928, 2017.
8. S. Clinet and N. Yoshida, Statistical inference for ergodic point processes and application to limit order book, Stochastic Process. Appl., 127 (2017), no. 6, 1800-1839.
9. D. J. Daley and D. Vere-Jones, An introduction to the theory of point processes: volume II: general theory and structure, Springer Science & Business Media, 2007.
10. S. Delattre, N. Fournier, and M Homann, Hawkes processes on large networks, Ann. Appl. Probab., 26 (2016), no. 1, 216-261.
11. C. Dion and S. Lemler, Nonparametric drift estimation for diffusions with jumps driven by a Hawkes process, HAL, 2019.
12. R. Douc, G. Fort, and A. Guillin, Subgeometric rates of convergence of f-ergodic strong markov processes, Stochastic Process. Appl., 119 (2009), no. 3, 897-923.
13. A. Duarte, E. Locherbach, and G. Ost, Stability, convergence to equilibrium and simulation of non-linear Hawkes processes with memory kernels given by the sum of Erlang kernels, arXiv preprint arXiv:1610.03300, 2016.
14. E. Gobet, LAN property for ergodic diffusions with discrete observations, Ann. Inst. H. Poincare Probab. Statist., 38 (2002), no. 5, 711-737.
15. C. Graham, Regenerative properties of the linear Hawkes process with unbounded memory, arXiv, 2019.
16. R. Z. Has'minskii, Stochastic stability of differential equations, Sijthoff & Noordhoff, 1980.
17. A.G Hawkes, Spectra of some self-exciting and mutually exciting point processes, Biometrika, 58 (1971), no. 1, 83-90.
18. P. Hodara and E. Locherbach, Hawkes processes with variable length memory and an infinite number of components, Adv. in Appl. Probab., 49 (2017), no. 1, 84-107.
19. R. Hopfner and E. Locherbach, Statistical models for Birth and Death on a Flow: Local absolute continuity and likelihood ratio processes, Scand. J. Stat., 26 (1999), no. 1, 107-128.
20. N. Ikeda, M. Nagasawa, and S. Watanabe, A construction of Markov processes by piecing out, Proc. Japan Acad., 42 (1966), no. 4, 370-375.
21. N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland Mathematical Library, Elsevier Science, 2014.
22. K. Ito and H. P. McKean, Diffusion Processes and their Sample Paths, 1965.
23. S. A. Klokov and A. Y. Veretennikov, On subexponential mixing rate for Markov processes, Theory Probab. Appl., 49 (2005), no. 1, 110-122.
24. A. M. Kulik, Introduction to Ergodic Rates for Markov Chains and Processes with Applications to Limit Theorems, Potsdam University Press, 2015.
25. H. Kunita, Stochastic Flows and Stochastic Di erential Equations, Cambridge University Press, Cambridge, 1992.
26. E. Locherbach, Absolute continuity of the invariant measure in piecewise deterministic Markov Processes having degenerate jumps, Stochastic Process. Appl., 128 (2018), 1797-1829.
27. E. Locherbach and D. Loukianova, On Nummelin splitting for continuous time Harris recurrent Markov processes and application to kernel estimation for multi-dimensional diffusions, Stochastic Process. Appl., 118 (2008), 1301-1321.
28. E. Locherbach and D. Loukianova, Polynomial deviation bounds for recurrent Harris processes having general state space, ESAIM Probab. Stat., 17 (2013), 195-218.
29. H. Masuda, Ergodicity and exponential -mixing bounds for multidimensional diffusions with jumps, Stochastic Process. Appl., 117 (2007), no. 1, 35-56.
30. S. P. Meyn and R. L. Tweedie, Stability of Markovian processes I: Criteria for discrete-time chains, Adv. Appl. Probab., 24 (1992), 542-574.
31. S. P. Meyn and R. L. Tweedie, Stability of Markovian processes III: Foster-Lyapunov criteria for continuous-time processes, Adv. Appl. Probab., 25 (1993), 487-548.
32. A. Millet and M Sanz-Sole, A simple proof of the support theorem for diffusion processes, Seminaire de probabilites de Strasbourg, 28 (1994), 36-48.
33. D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Springer Science & Business Media, 2013.
34. P. Reynaud-Bouret, V. Rivoirard, and C. Tuleau-Malot, Inference of functional connectivity in neurosciences via Hawkes processes, In Global Conference on Signal and Information Processing (GlobalSIP), IEEE, 2013, pp. 317-320.
35. D. W. Stroock and S. R. S. Varadhan, On the support of diffusion processes with applications to the strong maximum principle, In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Volume 3: Probability Theory, University of California Press, Berkeley, Calif., 1972, pp. 333-359.
36. P. Tankov and E. Voltchkova, Jump-diffusion models: a practitioner's guide, Banque et Marches, 99 (2009), no. 1, 24.
37. A. Yu. Veretennikov, On polynomial mixing bounds for stochastic differential equations, Stochastic Process. Appl., 70 (1997), no. 1, 115-127.