A Journal "Theory of Probability and Mathematical Statistics"
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



On Davie's uniqueness for some degenerate SDEs

E. Priola

Link

Abstract: We consider singular SDEs like $dZ_t = b(t, Z_t) dt + A Z_tdt + \sigma(t) d{L}_t , t \in [0,T], Z_0 =x \in \R^n,$ where $A$ is a real $n \times n $ matrix, i.\,e., $A \in {\R}^n \otimes {\R}^n$, $b$ is bounded and Hölder continuous, $\sigma\colon [0,\infty) \to {\R}^n \otimes {\R}^d $ is a locally bounded function and $L= ({L}_t)$ is an $\R^d$-valued Lévy process, $1 \le d \le n$. We show that strong existence and uniqueness together with $L^p$-Lipschitz dependence on the initial condition $x $ imply Davie's uniqueness or path by path uniqueness. This extends a result of [E. Priola, AIHP, 2018] proved for \eqref{ss} when $n=d$, $A=0$ and $\sigma(t) \equiv I$. We apply the result to some singular degenerate SDEs associated to the kinetic transport operator $ \frac{1}{2} \triangle_v f + $ ${v \cdot \partial_{x}f} $ $+F(x,v)\cdot \partial_{v}f$ when $n =2d$ and $L$ is an ${\R}^d$-valued Wiener process. For such equations strong existence and uniqueness are known under Hölder type conditions on $b$. We show that in addition also Davie's uniqueness holds.

Keywords: Degenerate stochastic differential equations, path-by-path uniqueness, Hölder continuous drift.

Bibliography:
1. S. V. Anulova, A. Y. Veretennikov, N. V. Krylov, R. Liptser, A. N. Shiryaev, Stochastic calculus. Probability theory, III, Encyclopaedia Math. Sci. vol. 45, Springer, Berlin, 1998.
2. D. Applebaum. Levy processes and stochastic calculus, Cambridge Studies in Advanced Mathematics, Cambridge University Press, II edition, 2009.
3. L. Beck, F. Flandoli, M. Gubinelli, M. Maurelli, Stochastic ODEs and stochastic linear PDEs with critical drift: regularity, duality and uniqueness, Electron. J. Probab. 24 (2019), 1-72.
4. O. Butkovsky, L. Mytnik, Regularization by noise and flows of solutions for a stochastic heat equation, Ann. Probab. 47 (2019), 165-212.
5. R. Catellier, M. Gubinelli, Averaging along irregular curves and regularisation of ODEs, Stochastic Process. Appl. 126 (2016), 2323-2366.
6. P. E. Chaudru de Raynal, Strong existence and uniqueness for stochastic differential equation with Holder drift and degenerate noise, Ann. Inst. Henri Poincare Probab. Stat. 53 (2017), 259-286.
7. P.E. Chaudru de Raynal, I. Honore, S. Menozzi, Strong regularization by Brownian noise propagating through a weak Hormander structure, preprint arXiv:1810.12225.
8. A. M. Davie, Uniqueness of solutions of stochastic differential equations, Int. Math. Res. Notices, no. 24 Art. ID rnm124, 26 pp. (2007).
9. E. Fedrizzi, F. Flandoli, Holder Flow and Differentiability for SDEs with Nonregular Drift, Stochastic Analysis and Applications 31 (2013) 708-736.
10. E. Fedrizzi, F. Flandoli, E. Priola and J. Vovelle, Regularity of Stochastic Kinetic Equations, Electron. J. Probab. 22 (2017) 1-42.
11. F. Flandoli, Random Perturbation of PDEs and Fluid Dynamic Models: Ecole D'ete de Probabilit es de Saint-Flour XL-2010. Springer.
12. K. Itô, Additive Processes (Processes with Independent Increments), Stochastic Processes, Barndor-Nielsen O.E., Sato K. (eds), Springer, Berlin, Heidelberg, 2004, pp 39-92.
13. N. V. Krylov, Introduction to the theory of random processes, Graduate Studies in Mathematics, 43, AMS, Providence, 2002.
14. N.V. Krylov, M. Rockner, Strong solutions to stochastic equations with singular time dependent drift, Probab. Theory Relat. Fields 131 (2005) 154-196.
15. H. Kunita, Stochastic Flows and Stochastic Differential Equations, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1997.
16. H. Kunita, Stochastic differential equations based on Levy processes and stochastic ows of diffeomorphisms, Real and stochastic analysis, Trends Math., Birkhauser Boston, MA, 2004, pp. 305-373.
17. H. Kunita, Stochastic Flows and Jump-Diffusions, Probability Theory and Stochastic Modelling vol. 92, Springer, 2019.
18. G. A. Pavliotis, Stochastic processes and applicationss: diffusion processes, the Fokker-Planck and Langevin equations, Springer, New York, 2014.
19. E. Priola, Davie's type uniqueness for a class of SDEs with jumps, Ann. Inst. Henri Poincare Probab. Stat. 54 (2018), 694-725.
20. A. Rocha-Arteaga, K. Sato, Topics in Infinitely Divisible Distributions and Lévy Processes, Communicaciones del CIMAT, Guanajuato, 2001.
21. K. I. Sato, Levy Processes and Infinitely Divisible Distributions, Cambridge University Press, 1999.
22. K. I. Sato, Stochastic integrals in additive processes and application to semi-Lévy processes, Osaka J. Math. 41 (2004), 211-236.
23. A. V. Shaposhnikov, Some remarks on Davie's uniqueness theorem, Proceedings of the Edinburgh Mathematical Society 59 (2016), 1019-1035.
24. A. V. Shaposhnikov and L. Wresch, Pathwise vs. path-by-path uniqueness, preprint arXiv: 2001.02869.
25. A. J. Veretennikov, Strong solutions and explicit formulas for solutions of stochastic integral equations, Mat. Sb., (N.S.) 111 (153) (1980), 434-452.
26. F. Y. Wang, X. Zhang, Degenerate SDE with Holder-Dini drift and non-Lipschitz noise coefficient, SIAM J. Math. Anal. 48 (2016), 2189-2226.
27. L. Wresch, Path-by-path uniqueness of infinite-dimensional stochastic differential equations, preprint arXiv:1706.07720.
28. X. Zhang, Stochastic Hamiltonian flows with singular coefficients, Sci. China Math. 61 (2018), 1353-1384.