Theory of Probability and Mathematical Statistics
On Davie's uniqueness for some degenerate SDEs
E. Priola
Link
Abstract: We consider singular SDEs like $dZ_t = b(t, Z_t) dt + A Z_tdt + \sigma(t) d{L}_t , t \in [0,T], Z_0 =x \in \R^n,$ where $A$ is a real $n \times n $ matrix, i.\,e., $A \in {\R}^n \otimes {\R}^n$, $b$ is bounded and Hölder continuous, $\sigma\colon [0,\infty) \to {\R}^n \otimes {\R}^d $ is a locally bounded function and $L= ({L}_t)$ is an $\R^d$-valued Lévy process, $1 \le d \le n$. We show that strong existence and uniqueness together with $L^p$-Lipschitz dependence on the initial condition $x $ imply Davie's uniqueness or path by path uniqueness. This extends a result of [E. Priola, AIHP, 2018] proved for \eqref{ss} when $n=d$, $A=0$ and $\sigma(t) \equiv I$. We apply the result to some singular degenerate SDEs associated to the kinetic transport operator $ \frac{1}{2} \triangle_v f + $ ${v \cdot \partial_{x}f} $ $+F(x,v)\cdot \partial_{v}f$ when $n =2d$ and $L$ is an ${\R}^d$-valued Wiener process. For such equations strong existence and uniqueness are known under Hölder type conditions on $b$. We show that in addition also Davie's uniqueness holds.
Keywords: Degenerate stochastic differential equations, path-by-path uniqueness, Hölder continuous drift.
Bibliography: 1. S. V. Anulova, A. Y. Veretennikov, N. V. Krylov, R. Liptser, A. N. Shiryaev, Stochastic calculus. Probability theory, III, Encyclopaedia Math. Sci. vol. 45, Springer, Berlin, 1998.
2. D. Applebaum. Levy processes and stochastic calculus, Cambridge Studies in Advanced Mathematics, Cambridge University Press, II edition, 2009.
3. L. Beck, F. Flandoli, M. Gubinelli, M. Maurelli, Stochastic ODEs and stochastic linear PDEs with critical drift: regularity, duality and uniqueness, Electron. J. Probab. 24 (2019), 1-72.
4. O. Butkovsky, L. Mytnik, Regularization by noise and flows of solutions for a stochastic heat equation, Ann. Probab. 47 (2019), 165-212.
5. R. Catellier, M. Gubinelli, Averaging along irregular curves and regularisation of ODEs, Stochastic Process. Appl. 126 (2016), 2323-2366.
6. P. E. Chaudru de Raynal, Strong existence and uniqueness for stochastic differential equation with Holder drift and degenerate noise, Ann. Inst. Henri Poincare Probab. Stat. 53 (2017), 259-286.
7. P.E. Chaudru de Raynal, I. Honore, S. Menozzi, Strong regularization by Brownian noise propagating through a weak Hormander structure, preprint arXiv:1810.12225.
8. A. M. Davie, Uniqueness of solutions of stochastic differential equations, Int. Math. Res. Notices, no. 24 Art. ID rnm124, 26 pp. (2007).
9. E. Fedrizzi, F. Flandoli, Holder Flow and Differentiability for SDEs with Nonregular Drift, Stochastic Analysis and Applications 31 (2013) 708-736.
10. E. Fedrizzi, F. Flandoli, E. Priola and J. Vovelle, Regularity of Stochastic Kinetic Equations, Electron. J. Probab. 22 (2017) 1-42.
11. F. Flandoli, Random Perturbation of PDEs and Fluid Dynamic Models: Ecole D'ete de Probabilit es de Saint-Flour XL-2010. Springer.
12. K. Itô, Additive Processes (Processes with Independent Increments), Stochastic Processes, Barndor-Nielsen O.E., Sato K. (eds), Springer, Berlin, Heidelberg, 2004, pp 39-92.
13. N. V. Krylov, Introduction to the theory of random processes, Graduate Studies in Mathematics, 43, AMS, Providence, 2002.
14. N.V. Krylov, M. Rockner, Strong solutions to stochastic equations with singular time dependent drift, Probab. Theory Relat. Fields 131 (2005) 154-196.
15. H. Kunita, Stochastic Flows and Stochastic Differential Equations, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1997.
16. H. Kunita, Stochastic differential equations based on Levy processes and stochastic
ows of diffeomorphisms, Real and stochastic analysis, Trends Math., Birkhauser Boston, MA, 2004, pp. 305-373.
17. H. Kunita, Stochastic Flows and Jump-Diffusions, Probability Theory and Stochastic Modelling vol. 92, Springer, 2019.
18. G. A. Pavliotis, Stochastic processes and applicationss: diffusion processes, the Fokker-Planck and Langevin equations, Springer, New York, 2014.
19. E. Priola, Davie's type uniqueness for a class of SDEs with jumps, Ann. Inst. Henri Poincare Probab. Stat. 54 (2018), 694-725.
20. A. Rocha-Arteaga, K. Sato, Topics in Infinitely Divisible Distributions and Lévy Processes, Communicaciones del CIMAT, Guanajuato, 2001.
21. K. I. Sato, Levy Processes and Infinitely Divisible Distributions, Cambridge University Press, 1999.
22. K. I. Sato, Stochastic integrals in additive processes and application to semi-Lévy processes, Osaka J. Math. 41 (2004), 211-236.
23. A. V. Shaposhnikov, Some remarks on Davie's uniqueness theorem, Proceedings of the Edinburgh Mathematical Society 59 (2016), 1019-1035.
24. A. V. Shaposhnikov and L. Wresch, Pathwise vs. path-by-path uniqueness, preprint arXiv: 2001.02869.
25. A. J. Veretennikov, Strong solutions and explicit formulas for solutions of stochastic integral equations, Mat. Sb., (N.S.) 111 (153) (1980), 434-452.
26. F. Y. Wang, X. Zhang, Degenerate SDE with Holder-Dini drift and non-Lipschitz noise coefficient, SIAM J. Math. Anal. 48 (2016), 2189-2226.
27. L. Wresch, Path-by-path uniqueness of infinite-dimensional stochastic differential equations, preprint arXiv:1706.07720.
28. X. Zhang, Stochastic Hamiltonian flows with singular coefficients, Sci. China Math. 61 (2018), 1353-1384.