Theory of Probability and Mathematical Statistics
A test on Mean-Variance Efficiency of the Tangency Portfolio in High Dimensional Setting
S. Muhinyuza
Link
Abstract: In this paper we derive the asymptotic distribution of the test of the efficiency of the tangency portfolio in high-dimensional settings, namely when both the portfolio dimension and the sample size grow to infinity. Moreover, we propose a new test based on the estimator for the slope parameter of the efficient frontier in the mean-variance space when there is a possibility in investing into the riskless asset, and derive the asymptotic distribution of that test statistic under both the null and alternative hypotheses. Additionally, we study the finite sample performance of the derived theoretical results via simulations.
Keywords: Tangency portfolio, mean-variance portfolio, high-dimensional settings
Bibliography: 1. 1. O. Bodnar and T. Bodnar, On the unbiased estimator of the eficient frontier, International Journal of Theoretical and Applied Finance 13 (2010), no. 07, 1065-1073.
2. T. Bodnar, A. K. Gupta, and N. Parolya, Direct shrinkage estimation of large dimensional precision matrix, Journal of Multivariate Analysis 146 (2016), 223-236.
3. T. Bodnar, N. Hautsch, and N. Parolya, Consistent estimation of the high dimensional eficient frontier, Tech. report, 2016.
4. T. Bodnar, S. Mazur, K. Podgorski, and J. Tyrcha, Tangency portfolio weights for singular covariance matrix in small and large dimensions: estimation and test theory, Journal of Statistical Planning and Inference 201 (2019), 40-57.
5. T. Bodnar, Y. Okhrin, and N. Parolya, Optimal shrinkage-based portfolio selection in high dimensions, arXiv preprint arXiv:1611.01958 (2019).
6. T. Bodnar, N. Parolya, and W. Schmid, Estimation of the global minimum variance portfolio in high dimensions, European Journal of Operational Research 266 (2018), no. 1, 371-390.
7. T. Bodnar and M. Reiz, Exact and asymptotic tests on a factor model in low and large dimensions with applications, Journal of Multivariate Analysis 150 (2016), 125-151.
8. T. Bodnar and W. Schmid, A test for the weights of the global minimum variance portfolio in an elliptical model, Metrika 67 (2008), no. 2, 127-143.
9. T. Bodnar and W. Schmid, Estimation of optimal portfolio compositions for Gaussian returns, Statistics & Decisions 26 (2009), no. 3, 179-201.
10. M. Britten-Jones, The sampling error in estimates of mean-variance efficient portfolio weights, The Journal of Finance 54 (1999), no. 2, 655-671.
11. G. Frahm and U. Jaekel, Tyler's m-estimator, random matrix theory, and generalized elliptical distributions with applications to finance, Random Matrix Theory, and Generalized Elliptical Distributions with Applications to Finance (October 21, 2008) (2008).
12. M. R. Gibbons, S. A. Ross, and J. Shanken, A test of the eficiency of a given portfolio, Econometrica (1989), 1121-1152.
13. K. Glombek, Statistical inference for high-dimensional global minimum variance portfolios, Scandinavian Journal of Statistics 41 (2014), no. 4, 845-865.
14. J. E. Ingersoll, Theory of financial decision making, 3 (1987).
15. H. Markowitz, Portfolio selection, The Journal of Finance 7 (1952), no. 1, 77-91.
16. A. M. Mathai and S. B. Provost, Quadratic forms in random variables, Marcel Dekker, 1992.
17. R. C. Merton, An analytic derivation of the eficient portfolio frontier, Journal of Financial and Quantitative Analysis 7 (1972), no. 4, 1851-1872.
18. S. Muhinyuza, T. Bodnar, and M. Lindholm, A test on the location of the tangency portfolio on the set of feasible portfolios, Applied Mathematics and Computation 386 (2020), 125519.
19. R. J. Muirhead, Aspects of Multivariate Statistical Theory, Wiley, New York, 1982.
20. A. C. Rencher and W. F. Christensen, Methods of multivariate analysis, John Wiley & Sons, 2012.
21. A. W. Van der Vaart, Asymptotic statistics, vol. 3, Cambridge university press, 2000.