A Journal "Theory of Probability and Mathematical Statistics"
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



On modeling the correlation as an additional parameter in random effects model

R. N. Muhumuza, O. Bodnar

Link

Abstract: In this paper, we develop objective Bayesian inference, i.\,e., Bayesian procedures based on non-informative priors, for the parameters in a generalized marginal random effects model where the correlation between random effects is introduced as an additional model parameter. This approach provides a generalization of the classical random effects model based on the assumption of normality and on the assumption that the random effects are independent. Assuming a generalized marginal random effects model, we derive the closed-form expression of the Fisher information matrix and the analytical expressions of both the Jeffreys prior and the Berger \& Bernardo reference prior. Furthermore, the posterior distributions are obtained and it is shown that the conditional posteriors for the location parameter of the model under the Jeffreys prior and under the Berger \& Bernardo reference prior are elliptically contoured distributed.

Keywords: Non-informative prior, generalized random effects model, meta-analysis, correlation coefficient, elliptically contoured distribution

Bibliography:
1. 1. J. Berger and J. M. Bernardo, On the development of reference priors, Bayesian Statistics (J. M. Bernardo, J. Berger, A. P. Dawid, and A. F. M. Smith, eds.), vol. 4, Oxford: University Press, 1992, pp. 35-60.
2. O. Bodnar, Non-informative Bayesian inference for heterogeneity in a generalized marginal random effects meta-analysis, Theory of Probability and Mathematical Statistics 100 (2019), 7-23.
3. O. Bodnar and C. Elster, Analysis of key comparisons with two reference standards: Extended random effects meta-analysis, Advanced Mathematical and Computational Tools in Metrology and Testing XI, 2018, pp. 1-8.
4. O. Bodnar, C. Elster, J. Fischer, A. Possolo, and B. Toman, Evaluation of uncertainty in the adjustment of fundamental constants, Metrologia 53 (2016), S46-S54.
5. O. Bodnar, A. Link, B. Arendacka, A. Possolo, and C. Elster, Bayesian estimation in random effects meta-analysis using a non-informative prior, Statistics in Medicine 36 (2017), no. 2, 378-399.
6. O. Bodnar, A. Link, and C. Elster, Objective Bayesian inference for a generalized marginal random effects model, Bayesian Analysis 11 (2016), 25-45.
7. W. J. Browne and D. Draper, A comparison of Bayesian and likelihood-based methods for fitting multilevel models, Bayesian Analysis 1 (2006), 473-514.
8. W. G. Cochran, Problems arising in the analysis of a series of similar experiments, Journal of the Royal Statistical Society - Supplement 4 (1937), 102-118.
9. W. G. Cochran, The combination of estimates from different experiments, Biometrics 10 (1954), 109-129.
10. A. Gelman, Analysis of variance - why it is more important than ever, The Annals of Statistics 33 (2005), 1-53.
11. A. Gelman, Prior distributions for variance parameters in hierarchical models, Bayesian Analysis 1 (2006), 515-533.
12. A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian data analysis, Taylor&Francis, 2013.
13. A.K Gupta, T. Varga, and T. Bodnar, Elliptically contoured models in statistics and portfolio theory, Springer, New York, 2013.
14. L. Held and D. S. Bove, Applied statistical inference, Springer, 2014.
15. B. M. Hill, Inference about variance components in the one-way model, Journal of the American Statistical Association 60 (1965), 806-825.
16. S. Portnoy, Formal Bayes estimation with application to a random effects model, The Annals of Mathematical Statistics 4 (1971), 1379-1402.
17. P. S. R. S. Rao, Variance components estimation: Mixed models, methodologies, and applications, Chapman and Hall, London, 1997.
18. A. L. Rukhin, Estimating heterogeneity variance in meta-analysis, Journal of the Royal Statistical Society: Series B 75 (2013), 451-469.
19. A. L. Rukhin, Estimation of the common mean from heterogeneous normal observations with unknown variances, Journal of the Royal Statistical Society: Ser. B 79 (2017), no. 5, 1601-1618.
20. A. L. Rukhin and A. Possolo, Laplace random effects models for interlaboratory studies, Computational Statistics & Data Analysis 55 (2011), 1815-1827.
21. H. Sahai and M. Ojeda, Analysis of variance for random models. vol.2. unbalanced data, Birkhauser, Boston, Basel, Berlin, 2004.
22. M. Stone and B. G. F. Springer, A paradox involving quasi-prior distributions, Biometrika 52 (1965), 623-627.
23. G. C. Tiao and G. E. P. Box, Bayesian inference in statistical analysis, Reading: Addison-Wesley, 1973.
24. G. C. Tiao and W. Y. Tan, Bayesian analysis of random-effect models in the analysis of variance. i: Posterior distribution of variance components, Biometrika 52 (1965), 37-53.
25. B. Toman, Bayesian approaches to calculating a reference value in key comparison experiments, Technometrics 49 (2007), 81-87.
26. R. M. Turner, D. Jackson, Y. Wei, S. G. Thompson, and J. Higgins, Predictive distributions for between-study heterogeneity and simple methods for their application in Bayesian meta-analysis, Statistics in Medicine 34 (2015), 984-998.
27. D. A. Van Dyk and X.-L. Meng, The art of data augmentation, Journal of Computational and Graphical Statistics 10 (2001), 1-50.
28. W. Viechtbauer, Bias and eficiency of meta-analytic variance estimators in the random-effects model, Journal of Educational and Behavioral Statistics 30 (2005), 261-293.
29. W. Viechtbauer, Confidence intervals for the amount of heterogeneity in meta-analysis, Statistics in Medicine 26 (2007), 37-52.
30. F. Yates and W. G. Cochran, The analysis of groups of experiments, Journal of Agricultural Science 28 (1938), 556-580.