A Journal "Theory of Probability and Mathematical Statistics"
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



On existence and uniqueness of the solution for stochastic partial differential equations

B. Avelin, L. Viitasaari

Link

Abstract: In this article we consider existence and uniqueness of the solutions to a large class of stochastic partial differential equations of the form $\partial_t u = L_x u + b(t,u)+\sigma(t,u)\dot{W}$, driven by a Gaussian noise $\dot{W}$, white in time, and with spatial correlations given by a generic covariance $\gamma$. We provide natural conditions under which classical Picard iteration procedure provides a unique solution. We illustrate the applicability of our general result by providing several interesting particular choices for the operator $L_x$ under which our existence and uniqueness results hold. In particular, we show that Dalang condition given in [5] is sufficient in the case of many parabolic and hypoelliptic operators $L_x$.

Keywords: Stochastic partial differential equations, existence and uniqueness, mild solution, semilinear parabolic equations, hypoelliptic equations

Bibliography:
1. T. Aronson, Bounds for the fundamental solution of a parabolic equation, Bull. Am. Math. Soc. 73 (1967), no. 6, 890–896.
2. O. Assaad, D. Nualart, C. A. Tudor, and L. Viitasaari, Quantitative normal approx- imations for the stochastic fractional heat equation, Stoch. PDE: Anal. Comp. (2021). https://doi.org/10.1007/s40072-021-00198-7.
3. B. Avelin, L. Capogna, G. Citti, and K. Nystro ̈m, Harnack estimates for degenerate parabolic equations modeled on the subelliptic p-Laplacian, Adv. Math. 257 (2014), 25–65.
4. A. Bonfiglioli, E. Lanconelli, and F. Uguzzoni, Stratified Lie groups and potential theory for their sub-Laplacians, Springer Monographs in Mathematics, Springer, Berlin, 2007.
5. R. Dalang, Extending the Martingale Measure Stochastic Integral With Applications to Spatially Homogeneous S.P.D.E.’s, Electron. J. Probab. 4 (1999), 1–29.
6. J. Eells and L. Lemaire, Selected topics in harmonic maps, CBMS Reg. Conf. Ser. in Math. vol. 50, American Mathematical Soc., Providence, RI, 1983.
7. L. Escauriaza, Bounds for the fundamental solutions of elliptic and parabolic equations: In memory of eugene fabes, Commun. Partial. Differ. 25 (2000), no. 5-6, 821–845.
8. A. Ferrero, F. Gazzola, and H. C. Grunau, Decay and local eventual positivity for biharmonic parabolic equations, Discrete Contin. Dyn. Syst. Ser. A 21 (2008), no. 4, 1129–1157.
9. A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964.
10. A. Friedman, Stochastic differential equations and applications. Vol. 1. Probability and Mathematical Statistics, Vol. 28, Academic Press, New York-London, 1975.
11. M. Foondun and D. Khoshnevisan, On the stochastic heat equation with spatially-colored random forcing, Trans. Am. Math. Soc. 365 (2013), 409–458.
12. H. C. Grunau, N. Miyake, and S. Okabe, Positivity of solutions to the Cauchy problem for linear and semilinear biharmonic heat equations, Adv. Nonlinear Anal. 10 (2020), no. 1, 353–370.
13. A. E. Kogoj and E. Lanconelli, An invariant Harnack inequality for a class of hypoelliptic ultraparabolic equations, Mediterr. J. Math. 1 (2004), no. 1, 51–80.
14. K. Nystrom and O. Sande, Extension properties and boundary estimates for a fractional heat operator, Nonlinear Anal. 140 (2016), 29–37.
15. J. L. V'azquez, The mathematical theories of diffusion: Nonlinear and fractional diffusion, Nonlocal and nonlinear diffusions and interactions: new methods and directions, Springer, Cham, 2017, pp. 205–278.
16. C. Villani, Hypocoercivity, Mem. Amer. Math. Soc. 202 (2009).
17. J. B. Walsh, An Introduction to Stochastic Partial Differential Equations, In: E'cole d'et'e de probabilit'es de Saint-Flour, XIV—1984, 265–439. Lecture Notes in Math. 1180, Springer, Berlin, 1986.