A Journal "Theory of Probability and Mathematical Statistics"
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



Stochastic heat equation with piecewise constant coefficients and generalized fractional type noise

M. Zili, E. Zougar

Link

Abstract: We investigate a new stochastic partial differential equation with second order elliptic operator in divergence form, having a piecewise constant diffusion coefficient with two points of discontinuity, and driven by a Gaussian noise which behaves as a Wiener process in space and the time covariance generates a signed measure. Such equation could be used in mathematical modeling of diffusion phenomena in medium consisting of three kinds of materials and undergoing stochastic perturbations. We focus our attention on the particular case when the noise behaves as a generalized fractional Brownian motion in time.

Keywords: Stochastic partial differential equations, piecewise constant coefficients, generalized fractional Brownian motion, covariance measure structure, Wiener integral

Bibliography:
1. Z. Q. Chen and M. Zili, One-dimensional heat equation with discontinuous conductance, Science China Mathematics 58 (2015), no. 1, 97–108.
2. C. El-Nouty and M. Zili, On the sub-mixed fractional Brownian motion, Appl. Math. J. Chinese Univ. 30 (2015), no. 1.
3. P. \'Etor\'e, On random walk simulation of one-dimonsional diffusion processes with discontinuous coefficients, Electron. J. Probab. 11 (2006), 249–275.
4. B. Gaveau, M. Okada, and T. Okada, Second order differential operators and Dirichlet integrals with singular coefficients, Tohoku Math. J. 39 (1987), 465–504.
5. C. Houdr\'e and J. Villa, An example of infinite dimensional quasi-helix, Contemp. Math, Am. math. Soc. 336 (2003), 195–201.
6. J. P. Kahane, Some random series of functions, Cambridge studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1985.
7. I. Kruk, F. Russo, and C. A. Tudor, Wiener integrals, Malliavin calculus and covariance mea- sure structure, J. Funct. Anal. 249 (2007), no. 1, 92–142.
8. Y. Mishura, K. Ralchenko, M. Zili, and E. Zougar, Fractional stochastic heat equation with piecewise constant coefficients, Stochastics and Dynamics 21 (2021), no. 01, 2150002.
9. Y. Mishura and M. Zili, Stochastic analysis of mixed fractional gaussian processes, ISTE Press, Elsevier, 2018.
10. J. W. Lamperti, Semi-stable stochastic processes, Trans. Amer. Math. Soc. 104 (1962), 62–78.
11. C. Tudor and M. Zili, Covariance measure and stochastic heat equation with fractional noise, Fract. Calc. Appl. Anal. 17 (2014), no. 3, 807–826.
12. C. Tudor and M. Zili, SPDE with generalized drift and fractional-type noise, Nonlinear Differential Equations and Applications NoDEA 23 (2016), Article number: 53.
13. C. A. Tudor, Analysis of variations for self-similar processes, Springer, 2013.
14. M. Zili, Generalized fractional Brownian motion, Modern Stochastics: Theory and Applications 4 (2017), 15–24.
15. M. Zili, On the mixed fractional Brownian motion, Journal of Mathematical Analysis and Applications 2006 (2006), Article ID 32435, 9 pages.
16. M. Zili, D\'eveloppement asymptotique en temps petits de la solution d'une \'equation aux d\'eriv\'ees partielles de type parabolique g\'en\'eralis\'ee au sens des distributions-mesures, Note des Comptes Rendues de de l'Acad\'emie des Sciences de Paris, S\'erie I, vol. 321, 1995, pp. 1049–1052.
17. M. Zili, Construction d'une solution fondamentale d'une \'equation aux d\'eriv\'ees partielles \`a coefficients constants par morceaux, Bull. Sci. Math. 123 (1999), 115–155.
18. M. Zili, Fundamental solution of a parabolic partial differential equation with piecewise constant coefficients and admitting a generalized drift, International Journal of Applied Mathematics 2 (2000), no. 9, 1073–1110.
19. M. Zili, Mixed Sub-Fractional Brownian Motion, Random Operators and Stochastic Equations 22 (2014), no. 3, 163–178.
20. M. Zili, On the Generalized Fractional Brownian Motion, Mathematical Models and Computer Simulation 10 (2018), no. 6, 1–11.
21. M. Zili and E. Zougar, One-dimensional stochastic heat equation with discontinuous conduc- tance, Applicable Analysis: An International Journa 98 (2019), no. 12.
22. M. Zili and E. Zougar, Exact variations for stochastic heat equations with piecewise constant coefficients and application to parameter estimation, Theory Probab. Math. Stat. 100 (2019), no. 1, 75–101.
23. M. Zili and E. Zougar, Spatial quadratic variations for the solution to a stochastic partial differential equation with elliptic divergence form operator, Modern Stochastics: Theory and Applications 6 (2019), no. 3, 345–375.