A Journal "Theory of Probability and Mathematical Statistics"
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



On the locations of maxima and minima in a sequence of exchangeable random variables

D. Ferger

Link

Abstract: We show for a finite sequence of exchangeable random variables that the locations of the maximum and minimum are independent from every symmetric event. In particular they are uniformly distributed on the grid without the diagonal. Moreover, for an infinite sequence we show that the extrema and their locations are asymptotically independent. Here, in contrast to the classical approach we do not use affine-linear transformations. Moreover it is shown how the new transformations can be used in extreme value statistics.

Keywords: Extreme value theory, exchangeability, conditional independence

Bibliography:
1. Y. S. Chow and H. Teicher, Probability Theory, third edition, Springer-Verlag, New York, 1997.
2. R. A. Davis, Limit laws for the maximum and minimum of stationary sequences, Z. Wahrscheinlichkeitstheorie verw. Gebiete 61 (1982), 31–42.
3. R. A. Davis, Limit laws for upper and lower extremes from stationary mixing sequences, J. Multivar. Anal. 13 (1983), 273–286.
4. R. A. Davis, On upper and lower extremes in stationary sequences, Statistical Extremes and Applications (Vimeiro Conference), 1984, pp. 443–460.
5. L. De Haan and A. Ferreira, Extreme Value Theory, an Introduction, Springer-Verlag, New York, 2006.
6. R. A. Fisher and L. H. C. Tippett, Limiting forms of the frequency distribution of the largest or smallest member of a sample, Proc. Camb. Phil. Soc. 24 (1928), 180–190.
7. M. Fr\'{e}chet, Sur la loi de probabilit\'{e} de l'\'{e}cart maximum, Ann. Soc. Math. Polon 6 (1927), 93–116.
8. J. Galambos, The Asymptotic Theory of Extreme Order Statistics, Robert E. Krieger Publishing Company, Malabar, Florida, 1987.
9. B. V. Gnedenko, Sur la distribution limite du terme maximum d’une s ́erie al ́eatoire, Ann. Math. 44 (1943), 423–453.
10. R. Habibi, Exact distribution of argmax (argmin), Economic Quality Control 26 (2011), 155– 162.
11. P. Hall, The rate of convergence of normal extremes, J. Appl. Prob. 16 (1979), 433–439.
12. O. Kallenberg, Foundations of Modern Probability, Springer-Verlag, New York, Berlin, Heidelberg, 1997.
13. M. R. Leadbetter, G. Lingren, and H. Rootz\'{e}n, Extremes and Related Properties of Random Sequences and Processes, Springer-Verlag, Berlin, 1983.
14. E. L. Lehmann, Theory of Point Estimation, Springer-Verlag, New York, 1983.
15. L. Pereira and H. Ferreira, The asymptotic locations of the maximum and minimum of stationary sequences, J. Statist. Plann. Inference 104 (2002), 287–295.
16. W. Stute, Strong and weak representations of cumulative hazard function and Kaplan–Meier estimators on increasing sets, J. Statist. Plann. Inference 42 (1994), 315–329.
17. W. Stute, Stairway to hell, Stochastic Models, Statistics and Their Applications, Springer Proceedings in Mathematics & Statistics vol. 294, 2019, pp. 3–11.