Theory of Probability and Mathematical Statistics
On the locations of maxima and minima in a sequence of exchangeable random variables
D. Ferger
Link
Abstract: We show for a finite sequence of exchangeable random variables that the locations of the maximum and minimum are independent from every symmetric event. In particular they are uniformly distributed on the grid without the diagonal. Moreover, for an infinite sequence we show that the extrema and their locations are asymptotically independent. Here, in contrast to the classical approach we do not use affine-linear transformations. Moreover it is shown how the new transformations can be used in extreme value statistics.
Keywords: Extreme value theory, exchangeability, conditional independence
Bibliography: 1. Y. S. Chow and H. Teicher, Probability Theory, third edition, Springer-Verlag, New York, 1997.
2. R. A. Davis, Limit laws for the maximum and minimum of stationary sequences, Z. Wahrscheinlichkeitstheorie verw. Gebiete 61 (1982), 31–42.
3. R. A. Davis, Limit laws for upper and lower extremes from stationary mixing sequences, J. Multivar. Anal. 13 (1983), 273–286.
4. R. A. Davis, On upper and lower extremes in stationary sequences, Statistical Extremes and Applications (Vimeiro Conference), 1984, pp. 443–460.
5. L. De Haan and A. Ferreira, Extreme Value Theory, an Introduction, Springer-Verlag, New York, 2006.
6. R. A. Fisher and L. H. C. Tippett, Limiting forms of the frequency distribution of the largest or smallest member of a sample, Proc. Camb. Phil. Soc. 24 (1928), 180–190.
7. M. Fr\'{e}chet, Sur la loi de probabilit\'{e} de l'\'{e}cart maximum, Ann. Soc. Math. Polon 6 (1927), 93–116.
8. J. Galambos, The Asymptotic Theory of Extreme Order Statistics, Robert E. Krieger Publishing Company, Malabar, Florida, 1987.
9. B. V. Gnedenko, Sur la distribution limite du terme maximum d’une s ́erie al ́eatoire, Ann. Math. 44 (1943), 423–453.
10. R. Habibi, Exact distribution of argmax (argmin), Economic Quality Control 26 (2011), 155– 162.
11. P. Hall, The rate of convergence of normal extremes, J. Appl. Prob. 16 (1979), 433–439.
12. O. Kallenberg, Foundations of Modern Probability, Springer-Verlag, New York, Berlin, Heidelberg, 1997.
13. M. R. Leadbetter, G. Lingren, and H. Rootz\'{e}n, Extremes and Related Properties of Random Sequences and Processes, Springer-Verlag, Berlin, 1983.
14. E. L. Lehmann, Theory of Point Estimation, Springer-Verlag, New York, 1983.
15. L. Pereira and H. Ferreira, The asymptotic locations of the maximum and minimum of stationary sequences, J. Statist. Plann. Inference 104 (2002), 287–295.
16. W. Stute, Strong and weak representations of cumulative hazard function and Kaplan–Meier estimators on increasing sets, J. Statist. Plann. Inference 42 (1994), 315–329.
17. W. Stute, Stairway to hell, Stochastic Models, Statistics and Their Applications, Springer Proceedings in Mathematics & Statistics vol. 294, 2019, pp. 3–11.