A Journal "Theory of Probability and Mathematical Statistics"
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



For which functions are $f(X_t)-\Ee f(X_t)$ and $g(X_t)/\Ee g(X_t)$ martingales?

F. K\"{u}hn, R. L. Schilling

Link

Abstract: Let $X=(X_t)_{t\geq 0}$ be a one-dimensional L\'{e}vy process such that each $X_t$ has a $C^1_b$-density w.\,r.\,t.\ Lebesgue measure and certain polynomial or exponential moments. We characterize all polynomially bounded functions $f\colon\real\to\real$, and exponentially bounded functions $g\colon\real\to (0,\infty)$, such that $f(X_t)-\Ee f(X_t)$, resp.\ $g(X_t)/\Ee g(X_t)$, are martingales.

Keywords: L\'{e}vy process, Brownian motion, martingale, polynomial process, convolution equation, Choquet--Deny theorem, Cauchy functional equation, harmonic polynomial

Bibliography:
1. J. Acz\'el, Lectures on Functional Equations and Their Applications, Mathematics in Science and Engineering vol. 19, Academic Press, New York, 1966.
2. Th. Anghelutza, Sur une \'equation fonctionnelle caract\'erisant les polynomes, Matematica (Cluj) 6 (1932), 1–7.
3. D. Berger, F. K\"{u}hn, and R. L. Schilling, L\'{e}vy processes, martingales and uniform integrability, preprint arXiv:2102.09004 [math.PR].
4. D. Berger and R. L. Schilling, On the Liouville and strong Liouville properties for a class of non-local operators, Math. Scand (to appear), preprint arXiv:2101.01592 [math.PR].
5. P. L. Butzer and W. Kozakiewicz, On the Riemann derivatives for integrable functions, Bull. Amer. Math. Soc. 59 (1953), 572–581.
6. G. Choquet and J. Deny, Sur l'\'equation de convolution $\mu=\mu \ast \sigma$, C. R. Acad. Sci. Paris 250 (1960), 799–801.
7. J. Deny, Sur l'\'equation de convolution $\mu=\mu*\sigma$}, S\'em.\ Brelot--Choquet--Deny. Th\'eorie du potentiel 4 (1959–1960), 1–11.
8. V. Knopova and R. L. Schilling, A note on the existence of transition probability densities for L\'{e}vy processes, Forum Math. 25 (2013), 125–149.
9. F. K\"{u}hn, A Liouville theorem for L\'{e}vy generators, Positivity 25 (2021), 997–1012.
10. K.-S. Lau and C. R. Rao, Integrated Cauchy functional equation and characterizations of the exponential law, Sankhya, Ser. A 44 (1982), 72–90.
11. M. Mania and R. Tevzadze, On martingale transformation of the linear Brownian motion, Rep. Enlarged Sess. Semin. I. Vekua Appl. Math. 34 (2020), 58–61.
12. M. Mania and R. Tevzadze, On martingale transformations of multidimensional Brownian motion, Statist. Probab. Lett. 175 (2021), Article No. 109119.
13. M. Mania and R. Tevzadze, Functional equations and martingales, Aequat. Math (to appear), preprint arXiv:1912.06299 [math.PR].
14. B. Ramachandran and B. L. S. Prakasa Rao, On the equation $f(x) = \int_{-\infty}^{\infty} f(x+y) \, d\mu(y)$, Sankhya, Ser. A 46 (1984), 326–338.
15. D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, third edition, Grundlehren Math. Wiss. vol. 293, Springer, Berlin, 1999.
16. W. Rudin, Functional Analysis. Second edition, International Series in Pure and Applied Mathematics, McGraw–Hill, New York, 1991.
17. K. Sato, L\'{e}vy Processes and Infinitely Divisible Distributions. Second edition, Cambridge Studies in Advanced Mathematics vol. 68, Cambridge University Press, Cambridge, 2013.
18. R. L. Schilling, An introduction to L\'{e}vy and Feller processes, in: D. Khoshnevisan and R. L. Schilling, From L\'{e}vy-type Processes to Parabolic SPDEs, Adv. Courses Math. CRM Barcelona, Birkh\"{a}use/Springer, Cham, 2016, pp. 1–97.
19. M. Sharpe, Zeroes of infinitely divisible densities, Ann. Math. Statist. 40 (1969), 1503–1505.
20. A. N. Shiryaev, Probability, third edition, Graduate Texts in Mathematics vol. 95, Springer, New York, 2016.