A Journal "Theory of Probability and Mathematical Statistics"
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



On the least squares estimator asymptotic normality of the multivariate symmetric textured surface parameters

A. V. Ivanov, I. M. Savych

Link

Abstract: A multivariate trigonometric regression model is considered. Various discrete modifications of the similar bivariate model received serious attention in the literature on signal and image processing due to multiple applications in the analysis of symmetric textured surfaces. In the paper asymptotic normality of the least squares estimator for amplitudes and angular frequencies is obtained in multivariate trigonometric model assuming that the random noise is a homogeneous or homogeneous and isotropic Gaussian, in particular, strongly dependent random field on $\mathbb{R}^M,\,\, M>2.$

Keywords: Multivariate trigonometric model, texture surface, homogeneous and isotropic Gaussian random field, covariance function, spectral density, least squares estimate in the Walker sense, linearization theorem, asymptotic uniqueness, spectral measure of regression function, Brouwer fixed-point theorem, $\mu$-admissibility, asymptotic normality

Bibliography:
1. V. Anh, N. Leonenko, and A. Olenko, On the rate of convergence to Rosenblatt-type distribution, J. Math. Anal. Appl. 425 (2015), 111–132.
2. V. Anh, N. Leonenko, A. Olenko, and V. Vaskovych, On the rate of convergence in non-central limit theorems, Bernoulli 25 (2019), no. 4A, 2920–2948.
3. P. Billingsley, Convergence of Probability Measures, Second Edition, Wiley, 1999.
4. D. R. Brillinger, Regression for randomly sampled spatial series: the trigonometric case, J. Appl. Probab. 23A (1986), 275–289.
5. J. M. Francos, A. Z. Meiri, and B. Porat, A united texture model based on 2-D Wald type decomposition, IEEE Transactions on Signal Processing 17 (1993), no. 41, 2665–2678.
6. U. Grenander, On the estimation of regression coefficients in the case of an autocorrelated disturbance, Ann. Math. Statist. 25 (1954), no. 2, 252–272.
7. I. A. Ibragimov and Y. A. Rozanov, Gaussian Random Processes, Application of Mathematics vol. 9, Springer-Verlag, New York-Berlin, 1978. Translated from the Russian by A. B. Aries.
8. V. I. Istratescu, Fixed Point Theory, An introduction, Mathematics and its Applications vol. 7, Springer Netherlands, 1981.
9. A. V. Ivanov, Asymptotic Theory of Nonlinear Regression, vol. 389, Kluwer Academic Publishers Group, Dordrecht, 1997.
10. A. V. Ivanov, Consistency of the least squares estimator of the amplitudes and angular frequencies of a sum of harmonic oscillations in models with long-range dependence, Theor. Probab. Math. Statist. 80 (2010), 61–69.
11. A. V. Ivanov and N. N. Leonenko, Statistical Analysis of Random Fields, Mathematics and its Applications (Soviet Series) vol. 28, Kluwer Academic Publishers Group, Dordrecht, 1989.
With a preface by A. V. Skorohod; Translated from the Russian by Kochubinski\'{\i}.
12. A. V. Ivanov, N. N. Leonenko, M. D. Ruiz-Medina, and I. N. Savich, Limit theorems for weighted non-linear transformations of Gaussian processes with singular spectra, Ann. Probab. 41 (2013), no. 2, 1088–1114.
13. A. V. Ivanov, N. N. Leonenko, M. D. Ruiz-Medina, and B. M. Zhurakovsky, Estimation of harmonic component in regression with cyclically dependent errors, Statistics 49 (2015), no. 1, 156–186.
14. A. V. Ivanov and O. V. Lymar, The asymptotic normality for the least squares estimator of parameters in a two dimensional sinusoidal model of observations, Theor. Probab. Math. Statist. 100 (2020), 107–131.
15. A. V. Ivanov and O. V. Malyar, Consistency of the least squares estimator for the parameters of a sinusoidal model of a textured surface, Theor. Probab. Math. Statist. 97 (2018), 73–84.
16. P. S. Knopov, Optimal'nye otsenki parametrov stokhasticheskih sisrem, "Naukova Dumka", Kiev, 1981 (Russian).
17. D. Kundu and A. Mitra, Asymptotic properties of the least squares estimates of 2-D exponential signals, Multidimens. Systems Signal Process. 7 (1996), no. 2, 135–150.
18. D. Kundu and S. Nandi, Determination of discrete spectrum in a random field, Statist. Neerlandica 57 (2003), no. 2, 258–283.
19. P. Malliavan, Estimation d'un signal Lorentzien, C. R. Acad. Sci. Paris Ser. I Math. 319 (1994), no. 9, 991–997.
20. P. Malliavan, Sur la norme d'une matrice circulante gaussienne, C. R. Acad. Sci. Paris Ser. I Math. 319 (1994), no. 7, 745–749.
21. S. Nandi, D. Kundu, and R. K. Srivastava, Noise space decomposition method for two-dimensional sinusoidal model, Comput. Statist. Data Anal. 58 (2013), 147–161.
22. J. Pfanzagl, On the measurability and consistency of minimum contrast estimates, Metrika 14 (1969), 249–272.
23. C. R. Rao, L. C. Zhao, and B. Zhou, Maximum likelihood estimation of 2-D superimposed exponential, IEEE Transactions on Signal Processing 42 (1994), 795–802.
24. A. M. Walker, On the estimation of a harmonic component in a time series with stationary dependent residuals, Advances in Appl. Probability 5 (1973), 217–241.
25. J. H. Wilkinson, The algebraic eigenvalue problem, Clarendon Press, Oxford, 1965.
26. M. I. Yadrenko, Spectral Theory of Random Fields (Translations Series in Mathematics and Engineering), Springer, 1983.
27. T. Yuan and T. Subba Rao, Spectrum estimation for random fields with application to Markov modelling and texture classification, Markov Random Fields, Theory and Applications (R. Chellappa, A. K. Jain, eds.), Academic Press, New York, 1993.
28. H. Zhang and V. Mandrekar, Estimation of hidden frequencies for 2D stationary processes, J. Time Ser. Anal. 22 (2001), no. 5, 613–629.