A Journal "Theory of Probability and Mathematical Statistics"
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



Gaussian random fields: with and without covariances

N. H. Bingham and Tasmin L. Symons

Link

Abstract: We begin with isotropic Gaussian random fields, and show how the Bochner–Godement theorem gives a natural way to describe their covariance structure. We continue with a study of Matérn processes on Euclidean space, spheres, manifolds and graphs, using Bessel potentials and stochastic partial differential equations (SPDEs). We then turn from this continuous setting to approximating discrete settings, Gaussian Markov random fields (GMRFs), and the computational advantages they bring in handling large data sets, by exploiting the sparseness properties of the relevant precision (concentration) matrices.

Keywords: Gaussian random field, covariance function, Bessel potential, stochastic partial differential equation, Matérn process, Gaussian Markov random field, precision matrix, sparseness, numerical linear algebra

Bibliography:
1. Sofia Åberg and Krzysztof Podgórski, A class of non-Gaussian second order random fields, Extremes 14 (2011), no. 2, 187–222. MR 2794324, DOI 10.1007/s10687-010-0119-1
2. George E. Andrews, Richard Askey, and Ranjan Roy, Special functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge, 1999. MR 1688958, DOI 10.1017/CBO9781107325937
3. N. Aronszajn and K. T. Smith, Theory of Bessel potentials. I, Ann. Inst. Fourier (Grenoble) 11 (1961), 385–475 (English, with French summary). MR 143935, DOI 10.5802/aif.116
4. Peiman Asadi, Anthony C. Davison, and Sebastian Engelke, Extremes on river networks, Ann. Appl. Stat. 9 (2015), no. 4, 2023–2050. MR 3456363, DOI 10.1214/15-AOAS863
5. R. Askey and N. H. Bingham, Gaussian processes on compact symmetric spaces, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 37 (1976/77), no. 2, 127–143. MR 423000, DOI 10.1007/BF00536776
6. Christian Berg and Emilio Porcu, From Schoenberg coefficients to Schoenberg functions, Constr. Approx. 45 (2017), no. 2, 217–241. MR 3619442, DOI 10.1007/s00365-016-9323-9
7. N. H. Bingham, Random walk on spheres, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 22 (1972), 169–192. MR 305485, DOI 10.1007/BF00536088
8. N. H. Bingham and W. J. Krzanowski, The penetration of matrix and linear algebra into multivariate analysis and statistics. To appear, British J. Hist. Math., 2022.
9. N. H. Bingham, Aleksandar Mijatović, and Tasmin L. Symons, Brownian manifolds, negative type and geo-temporal covariances, Commun. Stoch. Anal. 10 (2016), no. 4, Article 3, 421–432. MR 3654466, DOI 10.31390/cosa.10.4.03
10. N. H. Bingham and A. J. Ostaszewski, Extremes and regular variation, Progress in Probability 78, 121–137. Birkhäuser, 2021, arXiv:2001.05420, 2020.
11. N. H. Bingham and T. L. Symons, Probability, Statistics and Planet Earth, I: Geotemporal covariances, arXiv:1706.02972, 2017.
12. N. H. Bingham and T. L. Symons, Probability, Statistics and Planet Earth, II:The Bochner-Godement theorem for symmetric spaces, arXiv:1707.05204, 2017.
13. N. H. Bingham and T. L. Symons, Gaussian random fields on the sphere and sphere cross line, Stochastic Processes and their Applications (2022), https://doi.org/10.1016/j.spa.2019.08.007, arXiv:1812.02103.
14. V. I. Bogachev, Measure theory. Vol. I, II, Springer-Verlag, Berlin, 2007. MR 2267655, DOI 10.1007/978-3-540-34514-5
15. V. Borovitskiy, I. Azangulov, A. Terenin, P. Mostowsky, M. P. Diesenroth, and N. Durrande, Matérn Gaussian processes on graphs, arXiv:2010.15538v3, 2020.
16. V. Borovitskiy, A. Terenin, P. Mostowsky, and M. Deisenroth, Matérn Gaussian Processes on Riemannian Manifolds, Advances in Neural Information Processing Systems (H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, eds.), vol. 33, Curran Associates, Inc., 2020, pp. 12426–12437.
17. Phil Broadbridge, Alexander D. Kolesnik, Nikolai Leonenko, and Andriy Olenko, Random spherical hyperbolic diffusion, J. Stat. Phys. 177 (2019), no. 5, 889–916. MR 4031900, DOI 10.1007/s10955-019-02395-0
18. Isaac Chavel, Eigenvalues in Riemannian geometry, Pure and Applied Mathematics, vol. 115, Academic Press, Inc., Orlando, FL, 1984. Including a chapter by Burton Randol; With an appendix by Jozef Dodziuk. MR 768584
19. Isaac Chavel, Riemannian geometry, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 98, Cambridge University Press, Cambridge, 2006. A modern introduction. MR 2229062, DOI 10.1017/CBO9780511616822
20. Fan R. K. Chung, Spectral graph theory, CBMS Regional Conference Series in Mathematics, vol. 92, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1997. MR 1421568
21. Daniel Cooley, Douglas Nychka, and Philippe Naveau, Bayesian spatial modeling of extreme precipitation return levels, J. Amer. Statist. Assoc. 102 (2007), no. 479, 824–840. MR 2411647, DOI 10.1198/016214506000000780
22. Harald Cramér and M. R. Leadbetter, Stationary and related stochastic processes, Dover Publications, Inc., Mineola, NY, 2004. Sample function properties and their applications; Reprint of the 1967 original. MR 2108670
23. Ingrid Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR 1162107, DOI 10.1137/1.9781611970104
24. Timothy A. Davis, Sivasankaran Rajamanickam, and Wissam M. Sid-Lakhdar, A survey of direct methods for sparse linear systems, Acta Numer. 25 (2016), 383–566. MR 3509211, DOI 10.1017/S0962492916000076
25. Laurens de Haan and John de Ronde, Sea and wind: multivariate extremes at work, Extremes 1 (1998), no. 1, 7–45. MR 1652944, DOI 10.1023/A:1009909800311
26. A. P. Dempster, Elements of continuous multivariate analysis, Addison-Wesley, 1969.
27. A. P. Dempster, Covariance selection, Biometrics 28 (1972), no. 1, 157–175. MR 3931974, DOI 10.2307/2528966
28. J. Deny, Review of N. Aronszajn and K. T. Smith, Theory of Bessel potentials I, Mathematical Reviews 26, 1485.
29. J. L. Doob, Stochastic processes, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1953. MR 0058896
30. A. Erdélyi, Higher transcendental functions [volumes I-III], McGraw-Hill Book Company, 1953.
31. V. Feller, Vvedenie v teoriyu veroyatnosteĭ i ee prilozheniya. Tom 2, 2nd ed., “Mir”, Moscow, 1984 (Russian). Translated from the second English edition and with a preface by Yu. V. Prokhorov. MR 779091
32. Simon Foucart and Holger Rauhut, A mathematical introduction to compressive sensing, Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, New York, 2013. MR 3100033, DOI 10.1007/978-0-8176-4948-7
33. I. M. Gel′fand, Spherical functions in symmetric Riemann spaces, Doklady Akad. Nauk SSSR (N.S.) 70 (1950), 5–8 (Russian). MR 0033832
34. I. M. Gel′fand and N. Ya. Vilenkin, Generalized functions. Vol. 4, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1964 [1977]. Applications of harmonic analysis; Translated from the Russian by Amiel Feinstein. MR 0435834
35. Marc G. Genton and William Kleiber, Cross-covariance functions for multivariate geostatistics, Statist. Sci. 30 (2015), no. 2, 147–163. MR 3353096, DOI 10.1214/14-STS487
36. R. Godement, Review of I. M. Gelfand, Spherical functions in symmetric Riemann spaces, Mathematical Reviews 11, 498b
37. Gene H. Golub and Charles F. Van Loan, Matrix computations, 3rd ed., Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 1996. MR 1417720
38. J. C. Guella, V. A. Menegatto, and A. P. Peron, An extension of a theorem of Schoenberg to products of spheres, Banach J. Math. Anal. 10 (2016), no. 4, 671–685. MR 3543906, DOI 10.1215/17358787-3649260
39. Peter Guttorp and Tilmann Gneiting, Studies in the history of probability and statistics. XLIX. On the Matérn correlation family, Biometrika 93 (2006), no. 4, 989–995. MR 2285084, DOI 10.1093/biomet/93.4.989
40. Trevor Hastie, Robert Tibshirani, and Martin Wainwright, Statistical learning with sparsity, Monographs on Statistics and Applied Probability, vol. 143, CRC Press, Boca Raton, FL, 2015. The lasso and generalizations. MR 3616141, DOI 10.1201/b18401
41. Sigurđur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR 0145455
42. Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561
43. Sigurdur Helgason, Geometric analysis on symmetric spaces, Mathematical Surveys and Monographs, vol. 39, American Mathematical Society, Providence, RI, 1994. MR 1280714, DOI 10.1090/surv/039
44. Takeyuki Hida, Hui-Hsiung Kuo, Jürgen Potthoff, and Ludwig Streit, White noise, Mathematics and its Applications, vol. 253, Kluwer Academic Publishers Group, Dordrecht, 1993. An infinite-dimensional calculus. MR 1244577, DOI 10.1007/978-94-017-3680-0
45. D. Higdon, A process-convolution approach to modelling temperatures in the North Atlantic Ocean, Environmental and Ecological Statistics 5 (1998), no. 2, 173–190
46. Dave Higdon, Space and space-time modeling using process convolutions, Quantitative methods for current environmental issues, Springer, London, 2002, pp. 37–56. MR 2059819
47. Roger A. Horn and Charles R. Johnson, Matrix analysis, Cambridge University Press, Cambridge, 1985. MR 832183, DOI 10.1017/CBO9780511810817
48. Bent Jørgensen, Statistical properties of the generalized inverse Gaussian distribution, Lecture Notes in Statistics, vol. 9, Springer-Verlag, New York-Berlin, 1982. MR 648107, DOI 10.1007/978-1-4612-5698-4
49. Olav Kallenberg, Foundations of modern probability, 2nd ed., Probability and its Applications (New York), Springer-Verlag, New York, 2002. MR 1876169, DOI 10.1007/978-1-4757-4015-8
50. Olav Kallenberg, Random measures, theory and applications, Probability Theory and Stochastic Modelling, vol. 77, Springer, Cham, 2017. MR 3642325, DOI 10.1007/978-3-319-41598-7
51. Annika Lang and Christoph Schwab, Isotropic Gaussian random fields on the sphere: regularity, fast simulation and stochastic partial differential equations, Ann. Appl. Probab. 25 (2015), no. 6, 3047–3094. MR 3404631, DOI 10.1214/14-AAP1067
52. Steffen L. Lauritzen, Graphical models, Oxford Statistical Science Series, vol. 17, The Clarendon Press, Oxford University Press, New York, 1996. Oxford Science Publications. MR 1419991
53. Finn Lindgren, Håvard Rue, and Johan Lindström, An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach, J. R. Stat. Soc. Ser. B Stat. Methodol. 73 (2011), no. 4, 423–498. With discussion and a reply by the authors. MR 2853727, DOI 10.1111/j.1467-9868.2011.00777.x
54. Anatoliy Malyarenko, Invariant random fields on spaces with a group action, Probability and its Applications (New York), Springer, Heidelberg, 2013. With a foreword by Nikolai Leonenko. MR 2977490, DOI 10.1007/978-3-642-33406-1
55. Domenico Marinucci and Giovanni Peccati, Random fields on the sphere, London Mathematical Society Lecture Note Series, vol. 389, Cambridge University Press, Cambridge, 2011. Representation, limit theorems and cosmological applications. MR 2840154, DOI 10.1017/CBO9780511751677
56. B. Matérn, Spatial Variation, 2nd ed., Springer, 1986.
57. François G. Meyer and Ronald R. Coifman, Brushlets: a tool for directional image analysis and image compression, Appl. Comput. Harmon. Anal. 4 (1997), no. 2, 147–187. MR 1448220, DOI 10.1006/acha.1997.0208
58. Franco P. Preparata and Michael Ian Shamos, Computational geometry, Texts and Monographs in Computer Science, Springer-Verlag, New York, 1985. An introduction. MR 805539, DOI 10.1007/978-1-4612-1098-6
59. Nasir M. Rajpoot, Roland G. Wilson, François G. Meyer, and Ronald R. Coifman, Adaptive wavelet packet basis selection for zerotree image coding, IEEE Trans. Image Process. 12 (2003), no. 12, 1460–1472. MR 2067798, DOI 10.1109/TIP.2003.818115
60. Marcel Riesz, Collected papers, Springer Collected Works in Mathematics, Springer, Heidelberg, 2013. Reprint of the 1988 edition [0962287]; Edited by Lars Gårding and Lars Hörmander. MR 3114980
61. Alexandre Rodrigues and Peter J. Diggle, A class of convolution-based models for spatio-temporal processes with non-separable covariance structure, Scand. J. Stat. 37 (2010), no. 4, 553–567. MR 2779636, DOI 10.1111/j.1467-9469.2009.00675.x
62. Walter Rudin, Functional analysis, 2nd ed., International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991. MR 1157815
63. Håvard Rue and Leonhard Held, Gaussian Markov random fields, Monographs on Statistics and Applied Probability, vol. 104, Chapman & Hall/CRC, Boca Raton, FL, 2005. Theory and applications. MR 2130347, DOI 10.1201/9780203492024
64. Håvard Rue, Sara Martino, and Nicolas Chopin, Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations, J. R. Stat. Soc. Ser. B Stat. Methodol. 71 (2009), no. 2, 319–392. MR 2649602, DOI 10.1111/j.1467-9868.2008.00700.x
65. Paul Sharkey and Hugo C. Winter, A Bayesian spatial hierarchical model for extreme precipitation in Great Britain, Environmetrics 30 (2019), no. 1, e2529, 19. MR 3908107, DOI 10.1002/env.2529
66. Daniel Simpson, Finn Lindgren, and Håvard Rue, In order to make spatial statistics computationally feasible, we need to forget about the covariance function, Environmetrics 23 (2012), no. 1, 65–74. MR 2873784, DOI 10.1002/env.1137
67. Daniel Simpson, Finn Lindgren, and Håvard Rue, Beyond the valley of the covariance function, Statist. Sci. 30 (2015), no. 2, 164–166. MR 3353097, DOI 10.1214/15-STS515
68. Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
69. E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971.
70. Michael L. Stein, Interpolation of spatial data, Springer Series in Statistics, Springer-Verlag, New York, 1999. Some theory for Kriging. MR 1697409, DOI 10.1007/978-1-4612-1494-6
71. Gabor Szegö, Orthogonal polynomials, American Mathematical Society Colloquium Publications, Vol. 23, American Mathematical Society, Providence, R.I., 1959. Revised ed. MR 0106295
72. Michael E. Taylor, Pseudodifferential operators, Princeton Mathematical Series, No. 34, Princeton University Press, Princeton, N.J., 1981. MR 618463, DOI 10.1515/9781400886104
73. Gerrit van Dijk, Introduction to harmonic analysis and generalized Gelfand pairs, De Gruyter Studies in Mathematics, vol. 36, Walter de Gruyter & Co., Berlin, 2009. MR 2640609, DOI 10.1515/9783110220209
74. John B. Walsh, An introduction to stochastic partial differential equations, École d’été de probabilités de Saint-Flour, XIV—1984, Lecture Notes in Math., vol. 1180, Springer, Berlin, 1986, pp. 265–439. MR 876085, DOI 10.1007/BFb0074920
75. G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995. Reprint of the second (1944) edition. MR 1349110
76. Nanny Wermuth, Analogies between multiplicative models in contingency tables and covariance selection, Biometrics 32 (1976), no. 1, 95–108 (English, with French summary). MR 403088, DOI 10.2307/2529341
77. P. Whittle, On stationary processes in the plane, Biometrika 41 (1954), 434–449. MR 67450, DOI 10.1093/biomet/41.3-4.434
78. P. Whittle, Stochastic processes in several dimensions, Bull. Inst. Internat. Statist. 40 (1963), 974–994 (English, with French summary). MR 173287
79. Peter Whittle, Systems in stochastic equilibrium, Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics, John Wiley & Sons, Ltd., Chichester, 1986. MR 850012
80. David Williams, Probability with martingales, Cambridge Mathematical Textbooks, Cambridge University Press, Cambridge, 1991. MR 1155402, DOI 10.1017/CBO9780511813658
81. David Williams, Weighing the odds, Cambridge University Press, Cambridge, 2001. A course in probability and statistics. MR 1854128, DOI 10.1017/CBO9781139164795
82. Joseph A. Wolf, Spaces of constant curvature, McGraw-Hill Book Co., New York-London-Sydney, 1967. MR 0217740
83. Joseph A. Wolf, Harmonic analysis on commutative spaces, Mathematical Surveys and Monographs, vol. 142, American Mathematical Society, Providence, RI, 2007. MR 2328043, DOI 10.1090/surv/142