A Journal "Theory of Probability and Mathematical Statistics"
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



Parametric estimation for functional autoregressive processes on the sphere

A. Caponera and C. Durastanti

Link

Abstract: The aim of this paper is to define a nonlinear least squares estimator for the spectral parameters of a spherical autoregressive process of order 1 in a parametric setting. Furthermore, we investigate on its asymptotic properties, such as weak consistency and asymptotic normality.

Keywords: High frequency asymptotics, parametric estimates, spherical harmonics, SPHAR(1) model, NLS estimator

Bibliography:
1. T. Amemiya, Asymptotic properties of extremum estimators, Advanced Econometrics, Harvard University Press, 1985.
2. C. Berg and E. Porcu, From Schoenberg coefficients to Schoenberg functions, Constr. Approx. 45 (2017), 217–241. MR 3619442
3. D. Bosq, Linear processes in function spaces: Theory and applications, Springer-Verlag, 2000. MR 1783138
4. D. R. Brillinger, Statistical inference for stationary point processes: Stochastic processes and related topics, Proc. Summer Res. Inst. Statist. Inference for Stochastic Processes, Indiana Univ. 1, 1975. MR 0381201
5. A. Caponera, SPHARMA approximations for stationary functional time series on the sphere, Stat. Inference Stoch. Process. 24 (2021), 609–634. MR 4321852
6. A. Caponera, C. Durastanti, and A. Vidotto, Lasso estimation for spherical autoregressive processes, Stoch. Proc. Appl. 137 (2021), 167–199. MR 4244190
7. A. Caponera and D. Marinucci, Asymptotics for spherical functional autoregressions, Ann. Statist. 49 (2021), 346–369. MR 4206681
8. C. Durastanti, X. Lan, and D. Marinucci, Needlet-Whittle estimates on the unit sphere, Electron. J. Stat. 7 (2013), 597–646. MR 3035267
9. C. Durastanti, X. Lan, and D. Marinucci, Gaussian semiparametric estimates on the unit sphere, Bernoulli 20 (2014), 28–77. MR 3160573
10. T. Gneiting, Nonseparable, stationary covariance functions for space-time data., J. Amer. Statist. Assoc 97 (2002), 590–600. MR 1941475
11. J. Guinness and M. Fuentes, Isotropic covariance functions on spheres: Some properties and modeling considerations, J. Multivariate Anal. 143 (2016), 143–152. MR 3431424
12. F. Hayashi, Econometrics, Princeton University Press, 2000. MR 1881537
13. M. Jun, Matérn-based nonstationary cross-covariance models for global processes, J. Multivariate Anal. 128 (2014), 134–146. MR 3199833
14. A. Lang and C. Schwab, Isotropic Gaussian random fields on the sphere: Regularity, fast simulation and stochastic partial differential equations, Ann. Appl. Probab. 25 (2015), 3047–3094. MR 3404631
15. D. Marinucci and G. Peccati, Random fields on the sphere: Representation, limit theorems and cosmological applications, London Mathematical Society Lecture Note Series, Cambridge University Press, 2011. MR 2840154
16. W. K. Newey and D. McFadden, Large sample estimation and hypothesis testing, Handbook of Econometrics, vol. 4, Elsevier, 1994, pp. 2111–2245. MR 1315971
17. I. Nourdin and G. Peccati, Normal approximations using Malliavin calculus: From Stein’s method to universality, Cambridge University Press, 2012. MR 2962301
18. E. Porcu, M. Bevilacqua, and M.G. Genton, Spatio-temporal covariance and cross-covariance functions of the great circle distance on a sphere, J. Amer. Statist. Assoc. 111 (2016), 888–898. MR 3538713
19. J. O. Ramsay and B. W. Silverman, Applied functional data analysis: Methods and case studies, vol. 77, Springer, 2002. MR 1910407
20. P. M. Robinson, Gaussian semiparametric estimation for long range dependence, Ann. Statist. 22 (1995), 1630–1661. MR 1370301
21. M. Sbert and J. Poch, A necessary and sufficient condition for the inequality of generalized weighted means, J. Inequal. Appl. 292 (2016). MR 3575752
22. E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, 1971.
23. M. L. Stein, On a class of space-time intrinsic random functions, Bernoulli 19 (2013), 387–408. MR 3037158
24. N. J. Vilenkin and A. U. Klimyk, Representation of Lie groups and special functions, Kluwer, 1991. MR 1099425
25. M. I. Yadrenko, Spectral theory of random fields, Optimization Software Inc., 1983. MR 697386