A Journal "Theory of Probability and Mathematical Statistics"
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



Extrapolation of stationary random fields via level sets

A. Das, V. Makogin and E. Spodarev

Link

Abstract: In this paper, we use the concept of excursion sets for the extrapolation of stationary random fields. Doing so, we define excursion sets for the field and its linear predictor, and then minimize the expected volume of the symmetric difference of these sets under the condition that the univariate distributions of the predictor and of the field itself coincide. We illustrate the new approach on Gaussian random fields.

Keywords: Stationary random field, Gaussian random field, extrapolation, linear prediction, excursion, level set, second order cone programming, quadratically constrained quadratic problem

Bibliography:
1. R. Adler and J. Taylor, Random fields and geometry, Springer Monographs in Mathematics, Springer, New York, 2007. MR 2319516
2. F. Alizadeh and D. Goldfarb, Second-order cone programming, vol. 95, 2003, ISMP 2000, Part 3 (Atlanta, GA), pp. 3–51. MR 1971381
3. A. Z. Averbuch, P. Neittaanmaki, and V. A. Zheludev, Spline and spline wavelet methods with applications to signal and image processing. Vol. I. Periodic splines, Springer, Dordrecht, 2014. MR 3243559
4. J.-M. Azaïs and M. Wschebor, Level sets and extrema of random processes and fields, John Wiley & Sons, Inc., Hoboken, NJ, 2009. MR 2478201
5. D. Azzimonti, J. Bect, C. Chevalier, and D. Ginsbourger, Quantifying uncertainties on excursion sets under a Gaussian random field prior, SIAM/ASA J. Uncertain. Quantif. 4 (2016), no. 1, 850–874. MR 3531737
6. D. Azzimonti and D. Ginsbourger, Estimating orthant probabilities of high-dimensional Gaussian vectors with an application to set estimation, J. Comput. Graph. Statist. 27 (2018), no. 2, 255–267. MR 3816262
7. A. Berlinet and C. Thomas-Agnan, Reproducing kernel Hilbert spaces in probability and statistics, Kluwer Academic Publishers, Boston, MA, 2004, With a preface by Persi Diaconis. MR 2239907
8. M. E. Biancolini, Fast radial basis functions for engineering applications, Springer, Cham, 2017. MR 3753637
9. D. Bolin and F. Lindgren, Excursion and contour uncertainty regions for latent Gaussian models, J. R. Stat. Soc. Ser. B. Stat. Methodol. 77 (2015), no. 1, 85–106. MR 3299400
10. S. Boyd and L. Vandenberghe, Convex optimization, Cambridge University Press, Cambridge, 2004. MR 2061575
11. C. Chevalier, D. Ginsbourger, J. Bect, E. Vazquez, V. Picheny, and Y. Richet, Fast parallel kriging-based stepwise uncertainty reduction with application to the identification of an excursion set, Technometrics 56 (2014), no. 4, 455–465. MR 3290615
12. J. P. Chilés and P. D. Delfiner, Geostatistics, Wiley Series in Probability and Statistics: Applied Probability and Statistics, John Wiley & Sons, Inc., New York, 1999. MR 1679557
13. N. A. C. Cressie, Statistics for spatial data, Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics, John Wiley & Sons, Inc., New York, 1991. MR 1127423
14. A. Das, V. Makogin, and E. Spodarev, R code for the extrapolation of Gaussian random fields with minimal error in level sets, https://www.uni-ulm.de/fileadmin/website_uni_ulm/mawi.inst.110/mitarbeiter/spodarev/publications/Software/extrapolation_code.R, 2021.
15. P. J. Diggle and P. J. Ribeiro, Jr., Model-based geostatistics, Springer Series in Statistics, Springer, New York, 2007. MR 2293378
16. C. Gaetan and X. Guyon, Spatial statistics and modeling, Springer Series in Statistics, Springer, New York, 2010. MR 2569034
17. A. Genz and F. Bretz, Computation of multivariate normal and
probabilities, Lecture Notes in Statistics, vol. 195, Springer, Dordrecht, 2009. MR 2840595
18. K. Höllig and J. Hörner, Approximation and modeling with B-splines, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2013. MR 3155467
19. W. Karcher, E. Shmileva, and E. Spodarev, Extrapolation of stable random fields, J. Multivariate Anal. 115 (2013), 516–536. MR 3004573
20. R. Klette and A. Rosenfeld, Digital geometry, Morgan Kaufmann Publishers, San Francisco, CA; Elsevier Science B.V., Amsterdam, 2004, Geometric methods for digital picture analysis. MR 2095127
21. M.-J. Lai and L. L. Schumaker, Spline functions on triangulations, Encyclopedia of Mathematics and its Applications, vol. 110, Cambridge University Press, Cambridge, 2007. MR 2355272
22. C. Lantuéjoul, Geostatistical simulation: Models and algorithms, Springer, Berlin, 2002.
23. G. Matheron, Matheron’s theory of regionalized variables, International Association for Mathematical Geosciences. Studies in Mathematical Geosciences, Oxford University Press, Oxford, 2019. MR 3932139
24. M. Mohammadi, Prediction of α-stable GARCH and ARMA-GARCH-M models, J. Forecast. 36 (2017), no. 7, 859–866. MR 3714411
25. M. Mohammadi and A. Mohammadpour, Best linear prediction for α-stable random processes, Statist. Probab. Lett. 79 (2009), no. 21, 2266–2272. MR 2591983
26. Yu. A. Rozanov, Stationary random processes, Holden-Day, Inc., San Francisco, Calif.-London-Amsterdam, 1967. MR 0214134
27. G. Samorodnitsky and M. Taqqu, Stable non-Gaussian random processes, Chapman & Hall/CRC, 1994. MR 1280932
28. M. Scheuerer, A comparison of models and methods for spatial interpolation in statistics and numerical analysis, Ph.D. thesis, Georg-August Universität, Göttingen, 2009.
29. M. Scheuerer, R. Schaback, and M. Schlather, Interpolation of spatial data—a stochastic or a deterministic problem?, European J. Appl. Math. 24 (2013), no. 4, 601–629. MR 3082868
30. M. Schlather, A. Malinowski, P. J. Menck, M. Oesting, and K. Strokorb, Analysis, simulation and prediction of multivariate random fields with package randomfields, Journal of Statistical Software 63 (2015), no. 8, 1–25.
31. Albert N. Shiryaev, Probability. 1, third ed., Graduate Texts in Mathematics, vol. 95, Springer, New York, 2016. MR 3467826
32. E. Spodarev, E. Shmileva, and S. Roth, Extrapolation of stationary random fields, Stochastic geometry, spatial statistics and random fields, Lecture Notes in Math., vol. 2120, Springer, Cham, 2015, pp. 321–368. MR 3330581
33. M. L. Stein, Interpolation of spatial data: Some theory for kriging, Springer Series in Statistics, Springer-Verlag, New York, 1999. MR 1697409
34. H. Tomita, Statistics and geometry of random interface systems, Formation, dynamics and statistics of patterns, Vol. 1, World Sci. Publ., River Edge, NJ, 1990, pp. 113–157. MR 1158478
35. E. Vazquez and M. P. Martinez, Estimation of the volume of an excursion set of a Gaussian process using intrinsic kriging, arxiv:math/0611273, Preprint, 2006.
36. H. Wackernagel, Multivariate geostatistics: An introduction with applications, Springer Berlin Heidelberg, 2013. MR 3074883