A Journal "Theory of Probability and Mathematical Statistics"
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



Non-central limit theorem for the spatial average of the solution to the wave equation with Rosenblatt noise

R. Dhoyer and C. A. Tudor

Link

Abstract: We analyze the limit behavior in distribution of the spatial average of the solution to the wave equation driven by the two-parameter Rosenblatt process in spatial dimension d=1. We prove that this spatial average satisfies a non-central limit theorem, more precisely it converges in law to a Wiener integral with respect to the Rosenblatt process. We also give a functional version of this limit theorem.

Keywords: Stochastic wave equation, Rosenblatt sheet, cumulants, multiple stochastic integrals, second Wiener chaos

Bibliography:
1. O. Assaad, D. Nualart, C. A. Tudor and L. Viitasaari, Quantitative normal approximations for the stochastic fractional heat equation. Preprint, to appear in Stoch. Partial Differ. Equ. Anal. Comput., https://doi-org.libproxy.viko.lt/10.1007/s40072-021-00198-7, 2022. MR 4385408
2. R. M. Balan, D. Nualart, L. Quer-Sardanyons and G. Zheng, The hyperbolic Anderson model: Moment estimates of the Malliavin derivatives and applications. Preprint, to appear in Stoch. Partial Differ. Equ. Anal. Comput., https://doi-org.libproxy.viko.lt/10.1007/s40072-021-00227-5, 2022.
3. L. Chen, D. Khoshnevisan, D. Nualart, F. Pu, Central limit theorems for spatial averages of the stochastic heat equation via Malliavin-Stein’s method. Preprint, to appear in Stoch. Partial Differ. Equ. Anal. Comput., https://doi.org/10.1007/s40072-021-00224-8, 2022. MR 3222416
4. J. Clarke De la Cerda and C. A. Tudor, Wiener integrals with respect to the Hermite random field and applications to the wave equation. Collect. Math., 65 (2014),no. 3, 341–356. MR 3240998
5. F. Delgado-Vences, D. Nualart, and G. Zheng, A central limit theorem for the stochastic wave equation with fractional noise. Ann. Inst. Henri Poincaré Probab. Stat. 56 (2020),no. 4, 3020–3042. MR 4164864
6. R. Dhoyer and C. A. Tudor, Spatial average for the solution to the heat equation with Rosenblatt noise. Preprint, to appear in Stochastic Analysis and Applications, https://doi.org/10.1080/07362994.2021.1972008, 2022.
7. J. Huang, D. Nualart and L. Viitasaari, A central limit theorem for the stochastic heat equation. Stochastic Process. Appl. 130 (2020), no. 12, 7170-7184. MR 4167203
8. J. Huang, D. Nualart, L. Viitasaari and G. Zheng, Gaussian fluctuations for the stochastic heat equation with colored noise. Stoch. Partial Differ. Equ. Anal. Comput. 8 (2020), no. 2, 402-421. MR 4098872
9. M. Maejima and C. A. Tudor, Wiener Integrals with respect to the Hermite process and a non-central limit theorem. Stoch. Anal. Appl. 25 (2007), no. 5, 1043–1056. MR 2352951
10. I. Nourdin, G. Peccati, Normal Approximations with Malliavin Calculus From Stein’s Method to Universality, Cambridge Tracts in Mathematics, 192, Cambridge University Press, Cambridge, 2012. MR 2962301
11. D. Nualart, Malliavin Calculus and Related Topics., second edition, Probability and its Applications (New York), Springer-Verlag, Berlin, 2006. MR 2200233
12. D. Nualart and G. Zheng, Central limit theorems for stochastic wave equations in dimensions one and two. Preprint, to appear in Stoch. Partial Differ. Equ. Anal. Comput., https://doi-org.libproxy.viko.lt/10.1007/s40072-021-00209-7, 2022.
13. D. Nualart and G. Zheng, Spatial ergodicity of stochastic wave equations in dimensions 1, 2 and 3. Electron. Commun. Probab. 25 (2020), Paper No. 80, 11 pp. MR 4187721
14. M. Slaoui and C. A. Tudor, On the linear stochastic heat equation with Hermite noise. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 22 (2019), no. 3, 1950022, 23 pp. MR 4064931
15. F. Treves, Basic Linear Partial Differential Equations, Pure and Applied Mathematics, Vol. 62, Academic Press, New York, 1975. MR 0447753
16. C. A. Tudor (2013). Analysis of variations for self-similar processes. A stochastic calculus approach. Probability and its Applications (New York). Springer, Cham, 2013. MR 3112799