Theory of Probability and Mathematical Statistics
Boundedness of the nodal domains of additive Gaussian fields
S. Muirhead
Link
Abstract: We study the connectivity of the excursion sets of additive Gaussian fields, i.e. stationary centred Gaussian fields whose covariance function decomposes into a sum of terms that depend separately on the coordinates. Our main result is that, under mild smoothness and correlation decay assumptions, the excursion sets {f≤l} of additive planar Gaussian fields are bounded almost surely at the critical level lc=0. Since we do not assume positive correlations, this provides the first examples of continuous non-positively-correlated stationary planar Gaussian fields for which the boundedness of the nodal domains has been confirmed. By contrast, in dimension d≥3 the excursion sets have unbounded components at all levels.
Keywords: Gaussian fields, level sets, nodal domains, percolation
Bibliography: 1. R. J. Adler, An introduction to continuity, extrema, and related topics for general Gaussian processes, Institute of Mathematical Statistics Lecture Notes—Monograph Series, vol. 12, Institute of Mathematical Statistics, Hayward, CA, 1990. MR 1088478
2. K. S. Alexander, Boundedness of level lines for two-dimensional random fields, Ann. Probab. 24 (1996), no. 4, 1653–1674. MR 1415224
3. V. Beffara and D. Gayet, Percolation without FKG, arXiv preprint arXiv:1710.10644 (2017). MR 2828326
4. S. Chatterjee, Superconcentration and related topics, Springer Monographs in Mathematics, Springer, Cham, 2014. MR 3157205
5. R. C. Dalang and T. Mountford, Jordan curves in the level sets of additive Brownian motion, Trans. Amer. Math. Soc. 353 (2001), no. 9, 3531–3545. MR 1837246
6. H. Duminil-Copin, A. Rivera, P.-F. Rodriguez, and H. Vanneuville, Existence of unbounded nodal hypersurface for smooth Gaussian fields in dimension d≥3, arXiv preprint arXiv:2108.08008 (2021).
7. N. Durrande, D. Ginsbourger, and O. Roustant, Additive covariance kernels for high-dimensional Gaussian process modeling, Ann. Fac. Sci. Toulouse Math. (6) 21 (2012), no. 3, 481–499. MR 3076409
8. A. M. Dykhne, Conductivity of a two-dimensional two-phase system, Zh. Eksp. Teor. Fiz. 59 (1970), 110–115.
9. A. Gandolfi, M. Keane, and L. Russo, On the uniqueness of the infinite occupied cluster in dependent two-dimensional site percolation, Ann. Probab. 16 (1988), no. 3, 1147–1157. MR 942759
10. C. Garban and H. Vanneuville, Bargmann-Fock percolation is noise sensitive, Electron. J. Probab. 25 (2020), Paper No. 98, 20. MR 4136478
11. G. Grimmett, Percolation, second ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 321, Springer-Verlag, Berlin, 1999. MR 1707339
12. T. E. Harris, A lower bound for the critical probability in a certain percolation process, Proc. Cambridge Philos. Soc. 56 (1960), 13–20. MR 115221
13. M. B. Isichenko, Percolation, statistical topography, and transport in random media, Rev. Modern Phys. 64 (1992), no. 4, 961–1043. MR 1187940
14. H. Kesten, The critical probability of bond percolation on the square lattice equals 1/2, Comm. Math. Phys. 74 (1980), no. 1, 41–59. MR 575895
15. M. R. Leadbetter, G. Lindgren, and H. Rootzén, Extremes and related properties of random sequences and processes, Springer Series in Statistics, Springer-Verlag, New York-Berlin, 1983. MR 1004671
16. S. A. Molchanov and A. K. Stepanov, Percolation in random fields. I, Teoret. Mat. Fiz. 55 (1983), no. 2, 246–256. MR 734878
17. S. A. Molchanov and A. K. Stepanov, Percolation in random fields. II, Teoret. Mat. Fiz. 55 (1983), no. 3, 592–599. MR 734878
18. S. Muirhead, A. Rivera, and H. Vanneuville (with an appendix by L. Köhler-Schindler), The phase transition for planar Gaussian percolation models without FKG, arXiv preprint arXiv:2010.11770 (2020).
19. S. Muirhead and H. Vanneuville, The sharp phase transition for level set percolation of smooth planar Gaussian fields, Ann. Inst. Henri Poincaré Probab. Stat. 56 (2020), no. 2, 1358–1390. MR 4076787
20. G. Pete, Corner percolation on ℤ
2 and the square root of 17, Ann. Probab. 36 (2008), no. 5, 1711–1747. MR 2440921
21. A. Rivera, Talagrand’s inequality in planar Gaussian field percolation, Electron. J. Probab. 26 (2021), Paper No. 26, 25. MR 4235477
22. A. Rivera and H. Vanneuville, The critical threshold for Bargmann–Fock percolation, Ann. H. Lebesgue 3 (2020), 169–215. MR 4060853
23. K. Tanguy, Some superconcentration inequalities for extrema of stationary Gaussian processes, Statist. Probab. Lett. 106 (2015), 239–246. MR 3389997
24. R. Zallen and H. Scher, Percolation on a continuum and the localization-delocalization transition in amorphous semiconductors, Phys. Rev. B. 4 (1971), 4471–4479.