A Journal "Theory of Probability and Mathematical Statistics"
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



Random Lipschitz–Killing curvatures: Reduction Principles, Integration by Parts and Wiener chaos

A. Vidotto

Link

Abstract: In this survey we collect some recent results regarding the Lipschitz–Killing curvatures (LKCs) of the excursion sets of random eigenfunctions on the two-dimensional standard flat torus (arithmetic random waves) and on the two-dimensional unit sphere (random spherical harmonics). In particular, the aim of the present survey is to highlight the key role of integration by parts formulae in order to have an extremely neat expression for the random LKCs. Indeed, the main tool to study local geometric functionals of random waves on manifold is to exploit their Wiener chaos decomposition and show that (often), in the so-called high-energy limit, a single chaotic component dominates their behavior. Moreover, reduction principles show that the dominant Wiener chaotic component of LKCs of random waves’ excursion sets at threshold level u≠0 is proportional to the integral of H2(f), f being the random field of interest and H2 the second Hermite polynomial. This will be shown via integration by parts formulae.

Keywords: Lipschitz-Killing curvatures, random eigenfunctions, Wiener chaos expansion, reduction principles

Bibliography:
1. R. J. Adler and J. E. Taylor, Random fields and geometry, Springer Monographs in Mathematics, Springer, New York, 2007. MR 2319516
2. J.-M. Azaïs and J. R. León, CLT for crossings of random trigonometric polynomials, Electron. J. Probab. 18 (2013), no. 68, 17. MR 3084654
3. D. Beliaev, V. Cammarota, and I. Wigman, Two point function for critical points of a random plane wave, Int. Math. Res. Not. IMRN (2019), no. 9, 2661–2689. MR 3947635
4. J. Benatar and R. W. Maffucci, Random waves on 𝕋3: nodal area variance and lattice point correlations, Int. Math. Res. Not. IMRN (2019), no. 10, 3032–3075. MR 3952558
5. P. Bérard, Volume des ensembles nodaux des fonctions propres du laplacien, Bony-Sjöstrand-Meyer seminar, 1984–1985, École Polytech., Palaiseau, 1985, Exp. No. 14, 10. MR 819780
6. M. V. Berry, Regular and irregular semiclassical wavefunctions, J. Phys. A 10 (1977), no. 12, 2083–2091. MR 489542
7. M. V. Berry, Statistics of nodal lines and points in chaotic quantum billiards: perimeter corrections, fluctuations, curvature, J. Phys. A 35 (2002), no. 13, 3025–3038. MR 1913853
8. S. Bourguin, C. Durastanti, D. Marinucci, and G. Peccati, Gaussian approximation of nonlinear statistics on the sphere, J. Math. Anal. Appl. 436 (2016), no. 2, 1121–1148. MR 3447000
9. J. Brüning, Über Knoten von Eigenfunktionen des Laplace-Beltrami-Operators, Math. Z. 158 (1978), no. 1, 15–21. MR 478247
10. V. Cammarota, D. Marinucci, and M. Rossi, Lipschitz–Killing curvatures for arithmetic random waves, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze (2022+, in press).
11. V. Cammarota, D. Marinucci, and I. Wigman, Fluctuations of the Euler–Poincaré characteristic for random spherical harmonics, Proc. Amer. Math. Soc. 144 (2016), no. 11, 4759–4775. MR 3544528
12. V. Cammarota and I. Wigman, Fluctuations of the total number of critical points of random spherical harmonics, Stochastic Process. Appl. 127 (2017), no. 12, 3825–3869. MR 3718098
13. V. Cammarota, Nodal area distribution for arithmetic random waves, Trans. Amer. Math. Soc. 372 (2019), no. 5, 3539–3564. MR 3988618
14. V. Cammarota and D. Marinucci, A quantitative central limit theorem for the Euler-Poincaré characteristic of random spherical eigenfunctions, Ann. Probab. 46 (2018), no. 6, 3188–3228. MR 3857854
15. V. Cammarota, D. Marinucci, and I. Wigman, On the distribution of the critical values of random spherical harmonics, J. Geom. Anal. 26 (2016), no. 4, 3252–3324. MR 3544960
16. S. Campese, D. Marinucci, and M. Rossi, Approximate normality of high-energy hyperspherical eigenfunctions, J. Math. Anal. Appl. 461 (2018), no. 1, 500–522. MR 3759554
17. S. Y. Cheng, Eigenfunctions and nodal sets, Comment. Math. Helv. 51 (1976), no. 1, 43–55. MR 397805
18. F. Dalmao, I. Nourdin, G. Peccati, and M. Rossi, Phase singularities in complex arithmetic random waves, Electron. J. Probab. 24 (2019), Paper No. 71, 45. MR 3978221
19. H. Donnelly and C. Fefferman, Nodal sets of eigenfunctions on Riemannian manifolds, Invent. Math. 93 (1988), no. 1, 161–183. MR 943927
20. A. Estrade and J. R. León, A central limit theorem for the Euler characteristic of a Gaussian excursion set, Ann. Probab. 44 (2016), no. 6, 3849–3878. MR 3572325
21. L. Fainsilber, P. Kurlberg, and B. Wennberg, Lattice points on circles and discrete velocity models for the Boltzmann equation, SIAM J. Math. Anal. 37 (2006), no. 6, 1903–1922. MR 2213399
22. A. V. Ivanov and N. N. Leonenko, Statistical analysis of random fields, Mathematics and its Applications (Soviet Series), vol. 28, Kluwer Academic Publishers Group, Dordrecht, 1989. MR 1009786
23. M. F. Kratz and J. R. León, Level curves crossings and applications for Gaussian models, Extremes 13 (2010), no. 3, 315–351. MR 2670094
24. M. Krishnapur, P. Kurlberg, and Igor Wigman, Nodal length fluctuations for arithmetic random waves, Ann. of Math. (2) 177 (2013), no. 2, 699–737. MR 3010810
25. P. Kurlberg and I. Wigman, On probability measures arising from lattice points on circles, Math. Ann. 367 (2017), no. 3-4, 1057–1098. MR 3623219
26. P. Kurlberg, I. Wigman, and N. Yesha, The defect of toral Laplace eigenfunctions and arithmetic random waves, Nonlinearity 34 (2021), no. 9, 6651–6684. MR 4304493
27. E. Landau, Uber die einteilung der positiven zahlen nach vier klassen nach der mindestzahl der zu ihrer addition zusammensetzung erforderlichen quadrate, Archiv der Math. und Physik 13 (1908), no. 3, 305–312.
28. A. Logunov, E. Malinnikova, N. Nadirashvili, and F. Nazarov, The sharp upper bound for the area of the nodal sets of Dirichlet Laplace eigenfunctions, Geom. Funct. Anal. 31 (2021), no. 5, 1219–1244. MR 4356702
29. A. Logunov, Nodal sets of Laplace eigenfunctions: proof of Nadirashvili’s conjecture and of the lower bound in Yau’s conjecture, Ann. of Math. (2) 187 (2018), no. 1, 241–262. MR 3739232
30. R. W. Maffucci, Nodal intersections for random waves against a segment on the 3-dimensional torus, J. Funct. Anal. 272 (2017), no. 12, 5218–5254. MR 3639527
31. R. W. Maffucci, Nodal intersections of random eigenfunctions against a segment on the 2-dimensional torus, Monatsh. Math. 183 (2017), no. 2, 311–328. MR 3641930
32. R. W. Maffucci, Nodal intersections for arithmetic random waves against a surface, Ann. Henri Poincaré 20 (2019), no. 11, 3651–3691. MR 4019200
33. D. Marinucci and I. Wigman, The defect variance of random spherical harmonics, J. Phys. A 44 (2011), no. 35, 355206.
34. D. Marinucci and G. Peccati, Ergodicity and Gaussianity for spherical random fields, J. Math. Phys. 51 (2010), no. 4, 043301, 23. MR 2662485
35. D. Marinucci and G. Peccati, Random fields on the sphere, London Mathematical Society Lecture Note Series, vol. 389, Cambridge University Press, Cambridge, 2011. MR 2840154
36. D. Marinucci, G. Peccati, M. Rossi, and I. Wigman, Non-universality of nodal length distribution for arithmetic random waves, Geom. Funct. Anal. 26 (2016), no. 3, 926–960. MR 3540457
37. D. Marinucci and M. Rossi, Stein–Malliavin approximations for nonlinear functionals of random eigenfunctions on Sd, J. Funct. Anal. 268 (2015), no. 8, 2379–2420. MR 3318653
38. D. Marinucci, M. Rossi, and I. Wigman, The asymptotic equivalence of the sample trispectrum and the nodal length for random spherical harmonics, Ann. Inst. Henri Poincaré Probab. Stat. 56 (2020), no. 1, 374–390. MR 4058991
39. D. Marinucci and I. Wigman, On the area of excursion sets of spherical Gaussian eigenfunctions, J. Math. Phys. 52 (2011), no. 9, 093301, 21. MR 2867816
40. D. Marinucci and I. Wigman, On nonlinear functionals of random spherical eigenfunctions, Comm. Math. Phys. 327 (2014), no. 3, 849–872. MR 3192051
41. F. Nazarov and M. Sodin, Asymptotic laws for the spatial distribution and the number of connected components of zero sets of Gaussian random functions, Zh. Mat. Fiz. Anal. Geom. 12 (2016), no. 3, 205–278. MR 3522141
42. M. Notarnicola, Fluctuations of nodal sets on the 3-torus and general cancellation phenomena, ALEA Lat. Am. J. Probab. Math. Stat. 18 (2021), no. 2, 1127–1194. MR 4282185
43. I. Nourdin and G. Peccati, Stein’s method on Wiener chaos, Probab. Theory Related Fields 145 (2009), no. 1–2, 75–118. MR 2520122
44. I. Nourdin and G. Peccati, Normal approximations with Malliavin calculus, Cambridge Tracts in Mathematics, vol. 192, Cambridge University Press, Cambridge, 2012. MR 2962301
45. I. Nourdin, G. Peccati, and M. Rossi, Nodal statistics of planar random waves, Comm. Math. Phys. 369 (2019), no. 1, 99–151. MR 3959555
46. D. Nualart and G. Peccati, Central limit theorems for sequences of multiple stochastic integrals, Ann. Probab. 33 (2005), no. 1, 177–193. MR 2118863
47. F. Oravecz, Z. Rudnick, and I. Wigman, The Leray measure of nodal sets for random eigenfunctions on the torus, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 1, 299–335. MR 2401223
48. G. Peccati and M. Rossi, Quantitative limit theorems for local functionals of arithmetic random waves, Computation and combinatorics in dynamics, stochastics and control, Abel Symp., vol. 13, Springer, Cham, 2018, pp. 659–689. MR 3967400
49. G. Peccati and A. Vidotto, Gaussian random measures generated by Berry’s nodal sets, J. Stat. Phys. 178 (2020), no. 4, 996–1027. MR 4064212
50. M. Rossi, The geometry of spherical random fields, Ph.D.-Thesis University of Rome Tor Vergata, 2015.
51. M. Rossi, The defect of random hyperspherical harmonics, J. Theoret. Probab. 32 (2019), no. 4, 2135–2165. MR 4020703
52. M. Rossi, Random nodal lengths and Wiener chaos, Probabilistic methods in geometry, topology and spectral theory, Contemp. Math., vol. 739, Amer. Math. Soc., [Providence], RI, [2019] ©2019, pp. 155–169. MR 4033918
53. M. Rossi and I. Wigman, Asymptotic distribution of nodal intersections for arithmetic random waves, Nonlinearity 31 (2018), no. 10, 4472–4516. MR 3846437
54. Z. Rudnick and I. Wigman, On the volume of nodal sets for eigenfunctions of the Laplacian on the torus, Ann. Henri Poincaré 9 (2008), no. 1, 109–130. MR 2389892
55. Z. Rudnick, I. Wigman, and N. Yesha, Nodal intersections for random waves on the 3-dimensional torus, Ann. Inst. Fourier (Grenoble) 66 (2016), no. 6, 2455–2484. MR 3580177
56. P. Sarnak and I. Wigman, Topologies of nodal sets of random band limited functions, Advances in the theory of automorphic forms and their L-functions, Contemp. Math., vol. 664, Amer. Math. Soc., Providence, RI, 2016, pp. 351–365. MR 3502990
57. G. Szego, Orthogonal polynomials, fourth ed., American Mathematical Society Colloquium Publications, Vol. XXIII, American Mathematical Society, Providence, R.I., 1975. MR 0372517
58. M. S. Taqqu, Weak convergence to fractional Brownian motion and to the Rosenblatt process, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 31 (1974/75), 287–302. MR 400329
59. A. P. Todino, A quantitative central limit theorem for the excursion area of random spherical harmonics over subdomains of S2, J. Math. Phys. 60 (2019), no. 2, 023505, 33. MR 3916834
60. A. P. Todino, Nodal lengths in shrinking domains for random eigenfunctions on S2, Bernoulli 26 (2020), no. 4, 3081–3110. MR 4140538
61. A. Vidotto, A note on the reduction principle for the nodal length of planar random waves, Statist. Probab. Lett. 174 (2021), Paper No. 109090, 5. MR 4237481
62. I. Wigman, Fluctuations of the nodal length of random spherical harmonics, Comm. Math. Phys. 298 (2010), no. 3, 787–831. MR 2670928
63. S. T. Yau (ed.), Seminar on Differential Geometry, Annals of Mathematics Studies, No. 102, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1982. MR 632404
64. S. Zelditch, Real and complex zeros of Riemannian random waves, Spectral analysis in geometry and number theory, Contemp. Math., vol. 484, Amer. Math. Soc., Providence, RI, 2009, pp. 321–342. MR 1500155