A Journal "Theory of Probability and Mathematical Statistics"
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



Multivariate Gaussian Random Fields over Generalized Product Spaces involving the Hypertorus

François Bachoc, Ana Paula Peron and Emilio Porcu

Link

Abstract: The paper deals with multivariate Gaussian random fields defined over generalized product spaces that involve the hypertorus. The assumption of Gaussianity implies the finite dimensional distributions to be completely specified by the covariance functions, being in this case matrix valued mappings.

We start by considering the spectral representations that in turn allow for a characterization of such covariance functions. We then provide some methods for the construction of these matrix valued mappings. Finally, we consider strategies to evade radial symmetry (called isotropy in spatial statistics) and provide representation theorems for such a more general case.


Keywords: Matrix valued covariance functions, multivariate random fields, torus, matrix spectral density

Bibliography:
A. Alegría, F. Cuevas-Pacheco, P. Diggle, and E. Porcu, The F-family of covariance functions: A Matérn analogue for modeling random fields on spheres, 2021. MR 4253853
D. Allard, R. Senoussi, and E. Porcu, Anisotropy models for spatial data, Int. Assoc. Math. Geosci. Stud. Math. Geosci. 48 (2016), no. 3, 305–328. MR 3476704
A. Arafat, E. Porcu, M. Bevilacqua, and J. Mateu, Equivalence and orthogonality of Gaussian measures on spheres, J. Multivariate Anal. 167 (2018), 306–318. MR 3830648
F. Bachoc, F. Gamboa, J.-M. Loubes, and N. Venet, A Gaussian process regression model for distribution inputs, IEEE Transactions on Information Theory 64 (2017), no. 10, 6620–6637. MR 3860751
F. Bachoc, E. Porcu, M. Bevilacqua, R. Furrer, and T. Faouzi, Asymptotically equivalent prediction in multivariate geostatistics, Bernoulli arXiv:2007.14684 (2020). MR 4474552
C. Berg, J. P. R. Christensen, and P. Ressel, Harmonic analysis on semigroups: theory of positive definite and related functions, vol. 100, Springer, 1984. MR 747302
C. Berg, A. Peron, and E. Porcu, Orthogonal expansions related to compact Gelfand pairs, Exposithiones Mathematicae 36 (2018), 259–277. MR 3907332
—, Schoenberg’s theorem for real and complex Hilbert spheres revisited, J. Approx. Theory 228 (2018), 58–78. MR 3766896
C. Berg and E. Porcu, From Schoenberg coefficients to Schoenberg functions, Constructive Approximation 45 (2017), no. 2, 217–241. MR 3619442
M. Bevilacqua, T. Faouzi, R. Furrer, and E. Porcu, Estimation and prediction using generalized Wendland covariance functions under fixed domain asymptotics, Ann. Statist. 47 (2019), no. 2, 828–856. MR 3909952
H. Cramer, On the theory of stationary random processes, Ann. Math. Artif. Intell. 41 (1940), no. 1, 215–230. MR 920
A. Estrade, A. Fariñas, and E. Porcu, Covariance functions on spheres cross time: Beyond spatial isotropy and temporal stationarity, Statist. Probab. Lett. 151 (2019), 1–7. MR 3934007
J. C. Guella and V. A. Menegatto, Strictly positive definite kernels on a product of spheres, Aust. J. Math. Anal. Appl. 435 (2016), 286–301. MR 3423396
—, Conditionally positive definite matrix valued kernels on Euclidean spaces, Constr. Approx. 52 (2020), no. 1, 65–92. MR 4118977
J. C. Guella, V. A. Menegatto, and A. P. Peron, An extension of a theorem of Schoenberg to products of spheres, Banach J. Math. Anal. 435 (2015), 286–301. MR 3423396
—, Strictly positive definite kernels on a product of spheres II, SIGMA Symmetry Integrability Geom. Methods Appl. 12 (2016), Paper No. 103, 15. MR 3566202
—, Strictly positive definite kernels on a product of circles, Positivity 21 (2017), no. 1, 329–342. MR 3613000
N. Leonenko and A. Malyarenko, Matérn class tensor-valued random fields and beyond, J. Stat. Phys. 168 (2017), no. 6, 1276–1301. MR 3691251
A. Malyarenko and M. Ostoja-Starzewski, Tensor-valued random fields for continuum physics, Cambridge University Press, 2018. MR 3930601
D. Marinucci and G. Peccati, Random Fields on the Sphere, Representation, Limit Theorems and Cosmological Applications, Cambridge, New York, 2011. MR 2840154
G. Mastrantonio, G. Jona Lasinio, and A. Gelfand, Spatio-temporal circular models with non-separable covariance structure, Test 25 (2016), 331–350. MR 3493522
G. Mastrantonio, G. Jona Lasinio, A. Pollice, G. Capotorti, L. Teodonio, G. Genova, and C. Blasi, A hierarchical multivariate spatio-temporal model for clustered climate data with annual cycles, Ann. Appl. Stat. 13 (2019), no. 2, 797–823. MR 3963553
V. A. Menegatto, V. A. Oliveira, and A. P. Peron, Conditionally positive definite dot product kernels, J. Math. Anal. Appl. 321 (2006), no. 1, 223–241. MR 2236554
V. A. Menegatto and A. P. Peron, Conditionally positive definite kernels on Euclidean domains, J. Math. Anal. Appl. 294 (2004), no. 1, 345–359. MR 2059891
M. Morimoto, Analytic functionals on the sphere, Translations of Mathematical Monographs, vol. 178, American Mathematical Society, Providence, RI, 1998. MR 1641900
F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, NIST handbook of mathematical functions hardback and CD-ROM, Cambridge University Press, 2010. MR 2655349
E. Porcu, A. Alegría, and R. Furrer, Modeling spatially global and temporally evolving data, International Statistical Review 86 (2018), 344–377. MR 3852415
E. Porcu, M. Bevilacqua, and M. G. Genton, Spatio-temporal covariance and cross-covariance functions of the great circle distance on a sphere, J. Amer. Statist. Assoc. 111 (2016), no. 514, 888–898. MR 3538713
E. Porcu, S. Castruccio, A. Alegria, and P. Crippa, Axially symmetric models for global data: A journey between geostatistics and stochastic generators, Environmetrics 30 (2019), no. 1, e2555. MR 3908104
E. Porcu, R. Furrer, and D. Nychka, 30 years of space–time covariance functions, Wiley Interdiscip. Rev. Comput. Stat. (2020), e1512. MR 4218945
E. Porcu, R. Senoussi, E. Mendoza, and M. Bevilacqua, Reduction problems and deformation approaches to nonstationary covariance functions over spheres, Electron. J. Stat. 14 (2020), no. 1, 890–916. MR 4062758
E. Porcu and P. A. White, Random Fields on the Hypertorus. Part I: their Covariance Modelling and Applications, Submitted (2020). MR 4376811
W. Rudin, Principles of mathematical analysis, vol. 3, McGraw-Hill New York, 1964. MR 0166310
M. Schlather, Some covariance models based on normal scale mixtures, Bernoulli 16 (2010), no. 3, 780–797. MR 2730648
I. J. Schoenberg, Positive definite functions on spheres, Duke Math. J. 9 (1942), no. 1, 96–108. MR 5922
R. Senoussi and E. Porcu, Nonstationary space–time covariance functions induced by dynamical systems, Scand. J. Stat. 49 (2022), 211–235. MR 4391052
S. Shirota and A. Gelfand, Space and circular time log Gaussian Cox processes with application to crime event data, Ann. Appl. Stat. 11 (2017), no. 2, 481–503. MR 3693535
M.L. Stein, Interpolation of spatial data: Some theory for kriging, Springer, New York, 1999. MR 1697409
G. Szegő, Orthogonal Polynomials, Colloquium Publications, vol. XXIII, American Mathematical Society, 1939. MR 0000077
G. Terdik, Angular spectra for non-Gaussian isotropic fields, Braz. J. Probab. Stat. 29 (2015), no. 4, 833–865. MR 3397396
P. A. White and E.Porcu, Nonseparable covariance models on circles cross time: A study of Mexico City ozone, Environmetrics (2019), e2558. MR 3999535
P. A. White and E. Porcu, Towards a complete picture of stationary covariance functions on spheres cross time, Electron. J. Stat. 13 (2019), 2566–2594. MR 3988087
M. I. Yadrenko, Spectral theory of random fields, Optimization Software, 1983. MR 697386