A Journal "Theory of Probability and Mathematical Statistics"
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



Stochastic analysis for vector-valued generalized grey Brownian motion

Wolfgang Bock, Martin Grothaus and Karlo Orge

Link

Abstract: In this article, we show that the standard vector-valued generalization of a generalized grey Brownian motion (ggBm) has independent components if and only if it is a fractional Brownian motion. In order to extend ggBm with independent components, we introduce a vector-valued generalized grey Brownian motion (vggBm). The characteristic function of the corresponding measure is introduced as the product of the characteristic functions of the one-dimensional case. We show that for this measure, the Appell system and a calculus of generalized functions or distributions are accessible. We characterize these distributions with suitable transformations and give a d-dimensional Donsker’s delta function as an example for such distributions. From there, we show the existence of local times and self-intersection local times of vggBm as distributions under some constraints, and compute their corresponding generalized expectations. At the end, we solve a system of linear SDEs driven by a vggBm noise in d dimensions.

Keywords: Non-Gaussian analysis, Mittag-Leffler analysis, generalized functions, vector-valued generalized grey Brownian motion, linear stochastic differential equations, local time

Bibliography:
S. Albeverio, Yu. L. Daletsky, Yu. G. Kondratiev, and L. Streit, Non-Gaussian infinite-dimensional analysis, J. Funct. Anal. 138 (1996), no. 2, 311–350. MR 1395961, DOI 10.1006/jfan.1996.0067
R. Alsultan and Ch. Ma, K-differenced vector random fields, Teor. Veroyatn. Primen. 63 (2018), no. 3, 482–499 (English, with Russian summary). MR 3833094, DOI 10.4213/tvp5119
Nicole Bäuerle and Sascha Desmettre, Portfolio optimization in fractional and rough Heston models, SIAM J. Financial Math. 11 (2020), no. 1, 240–273. MR 4078803, DOI 10.1137/18M1217243
Christian Bender, An Itô formula for generalized functionals of a fractional Brownian motion with arbitrary Hurst parameter, Stochastic Process. Appl. 104 (2003), no. 1, 81–106. MR 1956473, DOI 10.1016/S0304-4149(02)00212-0
Christian Bender and Yana A. Butko, Stochastic solutions of generalized time-fractional evolution equations, Fract. Calc. Appl. Anal. 25 (2022), no. 2, 488–519. MR 4437290, DOI 10.1007/s13540-022-00025-3
Y. M. Berezansky and Y. G. Kondratiev, Spectral methods in infinite-dimensional analysis. Vol. 1, Mathematical Physics and Applied Mathematics, vol. 12/1, Kluwer Academic Publishers, Dordrecht, 1995. Translated from the 1988 Russian original by P. V. Malyshev and D. V. Malyshev and revised by the authors. MR 1340626, DOI 10.1007/978-94-011-0509-5
Francesca Biagini, Yaozhong Hu, Bernt Øksendal, and Tusheng Zhang, Stochastic calculus for fractional Brownian motion and applications, Probability and its Applications (New York), Springer-Verlag London, Ltd., London, 2008. MR 2387368, DOI 10.1007/978-1-84628-797-8
W. Bock and J. L. da Silva. Wick type SDEs driven by grey Brownian motion, AIP Conference Proceedings, 1871(1):020004, 2017.
Wolfgang Bock, Sascha Desmettre, and José Luís da Silva, Integral representation of generalized grey Brownian motion, Stochastics 92 (2020), no. 4, 552–565. MR 4115989, DOI 10.1080/17442508.2019.1641093
N. Bourbaki, Topological vector spaces. Chapters 1–5, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1987. Translated from the French by H. G. Eggleston and S. Madan. MR 910295, DOI 10.1007/978-3-642-61715-7
Stamatis Cambanis, Steel Huang, and Gordon Simons, On the theory of elliptically contoured distributions, J. Multivariate Anal. 11 (1981), no. 3, 368–385. MR 629795, DOI 10.1016/0047-259X(81)90082-8
Philippe Carmona, Laure Coutin, and G. Montseny, Approximation of some Gaussian processes, Stat. Inference Stoch. Process. 3 (2000), no. 1-2, 161–171. 19th “Rencontres Franco-Belges de Statisticiens” (Marseille, 1998). MR 1819293, DOI 10.1023/A:1009999518898
Philippe Carmona, Laure Coutin, and Gérard Montseny, Stochastic integration with respect to fractional Brownian motion, Ann. Inst. H. Poincaré Probab. Statist. 39 (2003), no. 1, 27–68 (English, with English and French summaries). MR 1959841, DOI 10.1016/S0246-0203(02)01111-1
Yu. L. Daletskiĭ, A bi-orthogonal analogue of Hermite polynomials and the inversion of the Fourier transform with respect to a non-Gaussian measure, Funktsional. Anal. i Prilozhen. 25 (1991), no. 2, 68–70 (Russian); English transl., Funct. Anal. Appl. 25 (1991), no. 2, 138–140. MR 1142214, DOI 10.1007/BF01079597
Seán Dineen, Complex analysis in locally convex spaces, Notas de Matemática [Mathematical Notes], vol. 83, North-Holland Publishing Co., Amsterdam-New York, 1981. MR 640093
Mirko D’Ovidio, Silvia Vitali, Vittoria Sposini, Oleksii Sliusarenko, Paolo Paradisi, Gastone Castellani, and Gianni Pagnini, Centre-of-mass like superposition of Ornstein-Uhlenbeck processes: a pathway to non-autonomous stochastic differential equations and to fractional diffusion, Fract. Calc. Appl. Anal. 21 (2018), no. 5, 1420–1435. MR 3903618, DOI 10.1515/fca-2018-0074
Juan Du, Nikolai Leonenko, Chunsheng Ma, and Hong Shu, Hyperbolic vector random fields with hyperbolic direct and cross covariance functions, Stoch. Anal. Appl. 30 (2012), no. 4, 662–674. MR 2946043, DOI 10.1080/07362994.2012.684325
Kai Tai Fang, Samuel Kotz, and Kai Wang Ng, Symmetric multivariate and related distributions, Monographs on Statistics and Applied Probability, vol. 36, Chapman and Hall, Ltd., London, 1990. MR 1071174, DOI 10.1007/978-1-4899-2937-2
I. M. Gel’fand and N. Ya. Vilenkin, Generalized functions. Vol. 4: Applications of harmonic analysis, Academic Press, New York-London, 1964. Translated by Amiel Feinstein. MR 0173945
Rudolf Gorenflo, Anatoly A. Kilbas, Francesco Mainardi, and Sergei V. Rogosin, Mittag-Leffler functions, related topics and applications, Springer Monographs in Mathematics, Springer, Heidelberg, 2014. MR 3244285, DOI 10.1007/978-3-662-43930-2
M. Grothaus and F. Jahnert, Mittag-Leffler analysis II: Application to the fractional heat equation, J. Funct. Anal. 270 (2016), no. 7, 2732–2768. MR 3464056, DOI 10.1016/j.jfa.2016.01.018
M. Grothaus, F. Jahnert, F. Riemann, and J. L. da Silva, Mittag-Leffler analysis I: Construction and characterization, J. Funct. Anal. 268 (2015), no. 7, 1876–1903. MR 3315581, DOI 10.1016/j.jfa.2014.12.007
Martin Grothaus, Yuri G. Kondratiev, and Ludwig Streit, Complex Gaussian analysis and the Bargmann-Segal space, Methods Funct. Anal. Topology 3 (1997), no. 2, 46–64. MR 1632659
Martin Grothaus, Jan Müller, and Andreas Nonnenmacher, An improved characterisation of regular generalised functions of white noise and an application to singular SPDEs, Stoch. Partial Differ. Equ. Anal. Comput. 10 (2022), no. 2, 359–391. MR 4439986, DOI 10.1007/s40072-021-00200-2
Philipp Harms and David Stefanovits, Affine representations of fractional processes with applications in mathematical finance, Stochastic Process. Appl. 129 (2019), no. 4, 1185–1228. MR 3926553, DOI 10.1016/j.spa.2018.04.010
C. C. Heyde and N. N. Leonenko, Student processes, Adv. in Appl. Probab. 37 (2005), no. 2, 342–365. MR 2144557, DOI 10.1239/aap/1118858629
Takeyuki Hida, Hui-Hsiung Kuo, Jürgen Potthoff, and Ludwig Streit, White noise, Mathematics and its Applications, vol. 253, Kluwer Academic Publishers Group, Dordrecht, 1993. An infinite-dimensional calculus. MR 1244577, DOI 10.1007/978-94-017-3680-0
T. Hida and L. Streit (eds.), Let us use white noise, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017. MR 3645435, DOI 10.1142/10472
Yaozhong Hu and David Nualart, Renormalized self-intersection local time for fractional Brownian motion, Ann. Probab. 33 (2005), no. 3, 948–983. MR 2135309, DOI 10.1214/009117905000000017
Yaozhong Hu and Bernt Øksendal, Chaos expansion of local time of fractional Brownian motions, Stochastic Anal. Appl. 20 (2002), no. 4, 815–837. MR 1921068, DOI 10.1081/SAP-120006109
Yoshifusa Ito, Generalized Poisson functionals, Probab. Theory Related Fields 77 (1988), no. 1, 1–28. MR 921816, DOI 10.1007/BF01848128
F. Jahnert. Construction of a Mittag-Leffler analysis and its applications, PhD thesis, TU Kaiserslautern, Germany, 2015.
Douglas Kelker, Distribution theory of spherical distributions and a location-scale parameter generalization, Sankhyā Ser. A 32 (1970), 419–438. MR 287628
John L. Kelley and Isaac Namioka, Linear topological spaces, Graduate Texts in Mathematics, No. 36, Springer-Verlag, New York-Heidelberg, 1976. With the collaboration of W. F. Donoghue, Jr., Kenneth R. Lucas, B. J. Pettis, Ebbe Thue Poulsen, G. Baley Price, Wendy Robertson, W. R. Scott, and Kennan T. Smith; Second corrected printing. MR 0394084
A. N. Kochubei and S. D. Èidel'man, The Cauchy problem for evolution equations of fractional order, Dokl. Akad. Nauk 394 (2004), no. 2, 159–161 (Russian). MR 2089744
Yu. G. Kondratiev, P. Leukert, J. Potthoff, L. Streit, and W. Westerkamp, Generalized functionals in Gaussian spaces: the characterization theorem revisited, J. Funct. Anal. 141 (1996), no. 2, 301–318. MR 1418508, DOI 10.1006/jfan.1996.0130
Yuri G. Kondratiev, José L. Silva, and Ludwig Streit, Differential geometry on compound Poisson space, Methods Funct. Anal. Topology 4 (1998), no. 1, 32–58. MR 1770820
Yuri G. Kondratiev, Ludwig Streit, Werner Westerkamp, and Jia-an Yan, Generalized functions in infinite-dimensional analysis, Hiroshima Math. J. 28 (1998), no. 2, 213–260. MR 1637310
Hui-Hsiung Kuo, White noise distribution theory, Probability and Stochastics Series, CRC Press, Boca Raton, FL, 1996. MR 1387829
N. N. Leonenko, I. Papić, A. Sikorskii, and N. Šuvak, Heavy-tailed fractional Pearson diffusions, Stochastic Process. Appl. 127 (2017), no. 11, 3512–3535. MR 3707236, DOI 10.1016/j.spa.2017.03.004
N. N. Leonenko, I. Papić, A. Sikorskii, and N. Šuvak, Approximation of heavy-tailed fractional Pearson diffusions in Skorokhod topology, J. Math. Anal. Appl. 486 (2020), no. 2, 123934, 22. MR 4062953, DOI 10.1016/j.jmaa.2020.123934
Chunsheng Ma, Mittag-Leffler vector random fields with Mittag-Leffler direct and cross covariance functions, Ann. Inst. Statist. Math. 65 (2013), no. 5, 941–958. MR 3105803, DOI 10.1007/s10463-013-0398-9
Chunsheng Ma, Student’s
vector random fields with power-law and log-law decaying direct and cross covariances, Stoch. Anal. Appl. 31 (2013), no. 1, 167–182. MR 3007889, DOI 10.1080/07362994.2013.741401
Marcin Magdziarz, Black-Scholes formula in subdiffusive regime, J. Stat. Phys. 136 (2009), no. 3, 553–564. MR 2529684, DOI 10.1007/s10955-009-9791-4
Francesco Mainardi, Fractional calculus and waves in linear viscoelasticity—an introduction to mathematical models, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, [2022] ©2022. Second edition [of 2676137]. MR 4485803, DOI 10.1142/p926
F. Mainardi, A. Mura, and G. Pagnini. The functions of the Wright type in fractional calculus, Lecture Notes of Seminario Interdisciplinare di Matematica, 9 (2010), 111–128.
Benoit B. Mandelbrot and John W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev. 10 (1968), 422–437. MR 242239, DOI 10.1137/1010093
Mark M. Meerschaert and Hans-Peter Scheffler, Limit theorems for continuous-time random walks with infinite mean waiting times, J. Appl. Probab. 41 (2004), no. 3, 623–638. MR 2074812, DOI 10.1239/jap/1091543414
Ralf Metzler and Joseph Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep. 339 (2000), no. 1, 77. MR 1809268, DOI 10.1016/S0370-1573(00)00070-3
Ralf Metzler and Joseph Klafter, The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A 37 (2004), no. 31, R161–R208. MR 2090004, DOI 10.1088/0305-4470/37/31/R01
Yuliya S. Mishura, Stochastic calculus for fractional Brownian motion and related processes, Lecture Notes in Mathematics, vol. 1929, Springer-Verlag, Berlin, 2008. MR 2378138, DOI 10.1007/978-3-540-75873-0
G. Mittag-Leffler. Sur la nouvelle fonction Eα(x), C. R. Acad. Sci. Paris, 137 (1903), no. 1, 554–558.
G. Mittag-Leffler. Sopra la funzione Eα(x), Rend. Accad. Lincei, 5 (1904), no. 13, 3–5.
G. Mittag-Leffler, Sur la représentation analytique d’une branche uniforme d’une fonction monogène, Acta Math. 29 (1905), no. 1, 101–181 (French). cinquième note. MR 1555012, DOI 10.1007/BF02403200
Antonio Mura and Francesco Mainardi, A class of self-similar stochastic processes with stationary increments to model anomalous diffusion in physics, Integral Transforms Spec. Funct. 20 (2009), no. 3-4, 185–198. MR 2501791, DOI 10.1080/10652460802567517
A. Mura and G. Pagnini, Characterizations and simulations of a class of stochastic processes to model anomalous diffusion, J. Phys. A 41 (2008), no. 28, 285003, 22. MR 2430462, DOI 10.1088/1751-8113/41/28/285003
A. A. Muravlëv, Representation of fractal Brownian motion in terms of an infinite-dimensional Ornstein-Uhlenbeck process, Uspekhi Mat. Nauk 66 (2011), no. 2(398), 235–236 (Russian); English transl., Russian Math. Surveys 66 (2011), no. 2, 439–441. MR 2847795, DOI 10.1070/RM2011v066n02ABEH004746
Ivan Nourdin, Selected aspects of fractional Brownian motion, Bocconi & Springer Series, vol. 4, Springer, Milan; Bocconi University Press, Milan, 2012. MR 3076266, DOI 10.1007/978-88-470-2823-4
Nobuaki Obata, White noise calculus and Fock space, Lecture Notes in Mathematics, vol. 1577, Springer-Verlag, Berlin, 1994. MR 1301775, DOI 10.1007/BFb0073952
Harry Pollard, The completely monotonic character of the Mittag-Leffler function Eα(-x), Bull. Amer. Math. Soc. 54 (1948), 1115–1116. MR 27375, DOI 10.1090/S0002-9904-1948-09132-7
J. Potthoff and L. Streit, A characterization of Hida distributions, J. Funct. Anal. 101 (1991), no. 1, 212–229. MR 1132316, DOI 10.1016/0022-1236(91)90156-Y
G. Rangarajan and M. Ding. Processes with long-range correlations: Theory and applications, Springer Science & Business Media, 2003.
Alfonso Rocha-Arteaga and Ken-iti Sato, Topics in infinitely divisible distributions and Lévy processes, SpringerBriefs in Probability and Mathematical Statistics, Springer, Cham, 2019. Revised edition of [ MR2042245]. MR 3971266, DOI 10.1007/978-3-030-22700-5
Stefan G. Samko, Anatoly A. Kilbas, and Oleg I. Marichev, Fractional integrals and derivatives, Gordon and Breach Science Publishers, Yverdon, 1993. Theory and applications; Edited and with a foreword by S. M. Nikol′skiĭ; Translated from the 1987 Russian original; Revised by the authors. MR 1347689
Enrico Scalas, Five years of continuous-time random walks in econophysics, The complex networks of economic interactions, Lecture Notes in Econom. and Math. Systems, vol. 567, Springer, Berlin, 2006, pp. 3–16. MR 2198447, DOI 10.1007/3-540-28727-2_{1}
Walter R. Schneider, Grey noise, Stochastic processes, physics and geometry (Ascona and Locarno, 1988) World Sci. Publ., Teaneck, NJ, 1990, pp. 676–681. MR 1124240
W. R. Schneider, Grey noise, Ideas and methods in mathematical analysis, stochastics, and applications (Oslo, 1988) Cambridge Univ. Press, Cambridge, 1992, pp. 261–282. MR 1190506
R. Schumer, D. A. Benson, M. M. Meerschaert, and B. Baeumer. Fractal mobile/immobile solute transport, Water Resources Research, 39, no. 10, 2003.
F. Trèves. Topological vector spaces, distributions and kernels, Academic Press, New York, 1967.
Fangfang Wang, Nikolai Leonenko, and Chunsheng Ma, Isotropic random fields with infinitely divisible marginal distributions, Stoch. Anal. Appl. 36 (2018), no. 2, 189–208. MR 3750676, DOI 10.1080/07362994.2017.1385028
A. Wiman, Über den Fundamentalsatz in der Teorie der Funktionen Eα(x), Acta Math. 29 (1905), no. 1, 191–201 (German). MR 1555014, DOI 10.1007/BF02403202
A. Wiman, Über die Nullstellen der Funktionen Eα(x), Acta Math. 29 (1905), no. 1, 217–234 (German). MR 1555016, DOI 10.1007/BF02403204