A Journal "Theory of Probability and Mathematical Statistics"
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



Statistical inference for models driven by n-th order fractional Brownian motion

Hicham Chaouch, Hamid El Maroufy and Mohamed El Omari

Link

Abstract: We consider the following stochastic integral equation X(t)=μt+σ∫0tφ(s)dBHn(s), t≥0, where φ is a known function and BHn is the n-th order fractional Brownian motion. We provide explicit maximum likelihood estimators for both μ and σ2, then we formulate explicitly a least squares estimator for μ and an estimator for σ2 by using power variations method. The consistency and asymptotic normality are established for those estimators when the number of observations or the time horizon is sufficiently large.

Keywords: n-th order fractional Brownian motion, maximum likelihood estimator, least squares estimator, consistency, asymptotic normality

Bibliography:
R. Belfadli, K. Es-Sebaiy, and Y. Ouknine, Parameter estimation for fractional Ornstein–Uhlenbeck processes: Non-ergodic case, Frontiers in Science and Engineering, 1 (2011), no. 1, 1–16.Jan Beran, Statistics for long-memory processes, Monographs on Statistics and Applied Probability, vol. 61, Chapman and Hall, New York, 1994. MR 1304490
Jose Maria Varas Casado and Rob Hewson, Algorithm 1008: multicomplex number class for Matlab, with a focus on the accurate calculation of small imaginary terms for multicomplex step sensitivity calculations, ACM Trans. Math. Software 46 (2020), no. 2, Art. 18, 26. MR 4103644, DOI 10.1145/3378542
José Manuel Corcuera, David Nualart, and Jeannette H. C. Woerner, Power variation of some integral fractional processes, Bernoulli 12 (2006), no. 4, 713–735. MR 2248234, DOI 10.3150/bj/1155735933
M. El Omari, Mixtures of higher-order fractional Brownian motions, Comm. Statist. Theory Methods, (2021), 1–16.
Mohamed El Omari, An α-order fractional Brownian motion with Hurst index H∈(0,1) and α∈R+, Sankhya A 85 (2023), no. 1, 572–599. MR 4540809, DOI 10.1007/s13171-021-00266-z
Yaozhong Hu, David Nualart, Weilin Xiao, and Weiguo Zhang, Exact maximum likelihood estimator for drift fractional Brownian motion at discrete observation, Acta Math. Sci. Ser. B (Engl. Ed.) 31 (2011), no. 5, 1851–1859. MR 2884954, DOI 10.1016/S0252-9602(11)60365-2
Yaozhong Hu and David Nualart, Parameter estimation for fractional Ornstein-Uhlenbeck processes, Statist. Probab. Lett. 80 (2010), no. 11-12, 1030–1038. MR 2638974, DOI 10.1016/j.spl.2010.02.018
Yaozhong Hu, David Nualart, and Hongjuan Zhou, Parameter estimation for fractional Ornstein-Uhlenbeck processes of general Hurst parameter, Stat. Inference Stoch. Process. 22 (2019), no. 1, 111–142. MR 3918739, DOI 10.1007/s11203-017-9168-2
R. Jennane and R. Harba, Fractional Brownian motion: A model for image texture, EUSIPCO, Signal Processing, 3 (1994), 1389–1392.
M. L. Kleptsyna and A. Le Breton, Statistical analysis of the fractional Ornstein-Uhlenbeck type process, Stat. Inference Stoch. Process. 5 (2002), no. 3, 229–248. MR 1943832, DOI 10.1023/A:1021220818545
Gregory Lantoine, Ryan P. Russell, and Thierry Dargent, Using multicomplex variables for automatic computation of high-order derivatives, ACM Trans. Math. Software 38 (2012), no. 3, Art. 16, 21. MR 2923553, DOI 10.1145/2168773.2168774
T. Lundahl, W.J. Ohley, S.M. Kay, and R. Siffert, Fractional Brownian motion: A maximum likelihood estimator and its application to image texture, IEEE Transactions on medical imaging, 5(1986), no. 3, 152–161.
Benoit B. Mandelbrot and John W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev. 10 (1968), 422–437. MR 242239, DOI 10.1137/1010093
David Nualart, The Malliavin calculus and related topics, Probability and its Applications (New York), Springer-Verlag, New York, 1995. MR 1344217, DOI 10.1007/978-1-4757-2437-0
D. Nualart and S. Ortiz-Latorre, Central limit theorems for multiple stochastic integrals and Malliavin calculus, Stochastic Process. Appl. 118 (2008), no. 4, 614–628. MR 2394845, DOI 10.1016/j.spa.2007.05.004
A. P. Pentland, Fractal-based description of natural scenes, IEEE transactions on pattern analysis and machine intelligence, 6 (1984), 661–674.
E. Perrin, R. Harba, C. Berzin-Joseph, I. Iribarren, and A. Bonami, n-th-order fractional Brownian motion and fractional Gaussian noises, IEEE Transactions on Signal Processing, 49 (2001), no. 5, 1049–1059.
Vladas Pipiras and Murad S. Taqqu, Integration questions related to fractional Brownian motion, Probab. Theory Related Fields 118 (2000), no. 2, 251–291. MR 1790083, DOI 10.1007/s440-000-8016-7
James R. Schott, Matrix analysis for statistics, 3rd ed., Wiley Series in Probability and Statistics, John Wiley & Sons, Inc., Hoboken, NJ, 2017. MR 3497549
T. Sottinen and L. Viitasaari, Transfer principle for nth order fractional Brownian motion with applications to prediction and equivalence in law, Teor. Imovir. Mat. Stat. 98 (2018), 188–204 (English, with English, Russian and Ukrainian summaries); English transl., Theory Probab. Math. Statist. 98 (2019), 199–216. MR 3824687, DOI 10.1090/tpms/1071
Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
Katsuto Tanaka, Maximum likelihood estimation for the non-ergodic fractional Ornstein-Uhlenbeck process, Stat. Inference Stoch. Process. 18 (2015), no. 3, 315–332. MR 3395610, DOI 10.1007/s11203-014-9110-9
Katsuto Tanaka, Comparison of the LS-based estimators and the MLE for the fractional Ornstein-Uhlenbeck process, Stat. Inference Stoch. Process. 23 (2020), no. 2, 415–434. MR 4123930, DOI 10.1007/s11203-020-09215-3
Gene H. Golub and Charles F. Van Loan, Matrix computations, 3rd ed., Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 1996. MR 1417720
Weilin Xiao and Jun Yu, Asymptotic theory for estimating drift parameters in the fractional Vasicek model, Econometric Theory 35 (2019), no. 1, 198–231. MR 3904176, DOI 10.1017/S0266466618000051
M. Zabat, M. Vayer-Besançon, R. Harba, S. Bonnamy, and H. Van Damme, Surface topography and mechanical properties of smectite films, Trends in Colloid and Interface Science XI, (1997), 96–102.