A Journal "Theory of Probability and Mathematical Statistics"
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



On recurrence and transience of some Lévy-type processes in R

Victoria Knopova

Link

Abstract: In this note we prove some sufficient conditions for transience and recurrence of a Lévy-type process in R, whose generator defined on the test functions is of the form
Lf(x)=∫R(f(x+u)-f(x)-f(x)uI|u|≤1)v(x,du), f∈C2(R).
Here v(x,du) is a Lévy-type kernel, whose tails are either extended regularly varying or decaying fast enough. For the proof the Foster–Lyapunov approach is used.


Keywords: Recurrence, transience, Lévy-type process, Foster–Lyapunov criteria, Lyapunov function

Bibliography:
Dominique Bakry, Patrick Cattiaux, and Arnaud Guillin, Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré, J. Funct. Anal. 254 (2008), no. 3, 727–759. MR 2381160, DOI 10.1016/j.jfa.2007.11.002
Krzysztof Bogdan, PawełSztonyk, and Victoria Knopova, Heat kernel of anisotropic nonlocal operators, Doc. Math. 25 (2020), 1–54. MR 4077549, DOI 10.4171/dm/736
Björn Böttcher, An overshoot approach to recurrence and transience of Markov processes, Stochastic Process. Appl. 121 (2011), no. 9, 1962–1981. MR 2819236, DOI 10.1016/j.spa.2011.05.010
Björn Böttcher, René Schilling, and Jian Wang, Lévy matters. III, Lecture Notes in Mathematics, vol. 2099, Springer, Cham, 2013. Lévy-type processes: construction, approximation and sample path properties; With a short biography of Paul Lévy by Jean Jacod; Lévy Matters. MR 3156646, DOI 10.1007/978-3-319-02684-8
Krzysztof Bogdan, Krzysztof Burdzy, and Zhen-Qing Chen, Censored stable processes, Probab. Theory Related Fields 127 (2003), no. 1, 89–152. MR 2006232, DOI 10.1007/s00440-003-0275-1
Krzysztof Bogdan and PawełSztonyk, Harnack’s inequality for stable Lévy processes, Potential Anal. 22 (2005), no. 2, 133–150. MR 2137058, DOI 10.1007/s11118-004-0590-x
Krzysztof Bogdan and PawełSztonyk, Estimates of the potential kernel and Harnack’s inequality for the anisotropic fractional Laplacian, Studia Math. 181 (2007), no. 2, 101–123. MR 2320691, DOI 10.4064/sm181-2-1
R. K. Getoor, Transience and recurrence of Markov processes, Seminar on Probability, XIV (Paris, 1978/1979) Lecture Notes in Math., vol. 784, Springer, Berlin, 1980, pp. 397–409. MR 580144
B. Grigelionis, The Markov property of random processes, Litovsk. Mat. Sb. 8 (1968), 489–502 (Russian). MR 0251810
Randal Douc, Eric Moulines, Pierre Priouret, and Philippe Soulier, Markov chains, Springer Series in Operations Research and Financial Engineering, Springer, Cham, 2018. MR 3889011, DOI 10.1007/978-3-319-97704-1
Randal Douc, Gersende Fort, Eric Moulines, and Philippe Soulier, Practical drift conditions for subgeometric rates of convergence, Ann. Appl. Probab. 14 (2004), no. 3, 1353–1377. MR 2071426, DOI 10.1214/105051604000000323
Randal Douc, Gersende Fort, and Arnaud Guillin, Subgeometric rates of convergence of f-ergodic strong Markov processes, Stochastic Process. Appl. 119 (2009), no. 3, 897–923. MR 2499863, DOI 10.1016/j.spa.2008.03.007
Stewart N. Ethier and Thomas G. Kurtz, Markov processes, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1986. Characterization and convergence. MR 838085, DOI 10.1002/9780470316658
G. Fort and G. O. Roberts, Subgeometric ergodicity of strong Markov processes, Ann. Appl. Probab. 15 (2005), no. 2, 1565–1589. MR 2134115, DOI 10.1214/105051605000000115
W. Hoh. Pseudo differential operators generating Markov processes. Habilitationsschrift, Universität Bielefeld 1998. https://www.math.uni-bielefeld.de/~hoh/temp/pdo_mp.pdf
Walter Hoh, Pseudo differential operators with negative definite symbols of variable order, Rev. Mat. Iberoamericana 16 (2000), no. 2, 219–241. MR 1809340, DOI 10.4171/RMI/274
Niels Jacob, Feller semigroups, Dirichlet forms, and pseudodifferential operators, Forum Math. 4 (1992), no. 5, 433–446. MR 1176881, DOI 10.1515/form.1992.4.433
Niels Jacob, A class of Feller semigroups generated by pseudo-differential operators, Math. Z. 215 (1994), no. 1, 151–166. MR 1254818, DOI 10.1007/BF02571704
Niels Jacob and Hans-Gerd Leopold, Pseudo-differential operators with variable order of differentiation generating Feller semigroups, Integral Equations Operator Theory 17 (1993), no. 4, 544–553. MR 1243995, DOI 10.1007/BF01200393
N. Jacob, Pseudo differential operators and Markov processes. Vol. I, Imperial College Press, London, 2001. Fourier analysis and semigroups. MR 1873235, DOI 10.1142/9781860949746
N. Jacob, Pseudo differential operators & Markov processes. Vol. II, Imperial College Press, London, 2002. Generators and their potential theory. MR 1917230, DOI 10.1142/9781860949562
Victoria Knopova, Alexei Kulik, and René L. Schilling, Construction and heat kernel estimates of general stable-like Markov processes, Dissertationes Math. 569 (2021), 86. MR 4361582, DOI 10.4064/dm824-8-2021
Koji Kikuchi and Akira Negoro, On Markov process generated by pseudodifferential operator of variable order, Osaka J. Math. 34 (1997), no. 2, 319–335. MR 1483853
Victoria Knopova and Alexei Kulik, Parametrix construction of the transition probability density of the solution to an SDE driven by α-stable noise, Ann. Inst. Henri Poincaré Probab. Stat. 54 (2018), no. 1, 100–140 (English, with English and French summaries). MR 3765882, DOI 10.1214/16-AIHP796