A Journal "Theory of Probability and Mathematical Statistics"
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



Aggregation of network traffic and anisotropic scaling of random fields

Remigijus Leipus, Vytautė Pilipauskaitė and Donatas Surgailis

Link

Abstract: We discuss joint spatial-temporal scaling limits of sums Aλ,γ (indexed by (x,y)∈R+2) of large number O(λγ) of independent copies of integrated input process X={X(t), t∈R} at time scale λ, for any given γ>0. We consider two classes of inputs X: (I) Poisson shot-noise with (random) pulse process, and (II) regenerative process with random pulse process and regeneration times following a heavy-tailed stationary renewal process. The above classes include several queueing and network traffic models for which joint spatial-temporal limits were previously discussed in the literature. In both cases (I) and (II) we find simple conditions on the input process in order that the normalized random fields Aλ,γ tend to an α-stable Lévy sheet (1<α<2) if γ<γ0, and to a fractional Brownian sheet if γ>γ0, for some γ0>0. We also prove an ‘intermediate’ limit for γ=γ0. Our results extend the previous works of R. Gaigalas and I. Kaj [Bernoulli 9 (2003), no. 4, 671–703] and T. Mikosch, S. Resnick, H. Rootzén and A. Stegeman [Ann. Appl. Probab. 12 (2002), no. 1, 23–68] and other papers to more general and new input processes.

Keywords: Heavy tails, long-range dependence, self-similarity, shot-noise process, regenerative process, superimposed network traffic, joint spatial-temporal limits, anisotropic scaling of random fields, scaling transition, intermediate limit, Telecom process, stable Lévy sheet, fractional Brownian sheet, renewal process, large deviations, ON/OFF process, M/G/∞ queue, M/G/1/0 queue, M/G/1/∞ queue

Bibliography:
Søren Asmussen, Applied probability and queues, 2nd ed., Applications of Mathematics (New York), vol. 51, Springer-Verlag, New York, 2003. Stochastic Modelling and Applied Probability. MR 1978607
Søren Asmussen and Sergey Foss, Regular variation in a fixed-point problem for single- and multi-class branching processes and queues, Adv. in Appl. Probab. 50 (2018), no. A, 47–61. MR 3905090, DOI 10.1017/apr.2018.69
Albert Benassi, Stéphane Jaffard, and Daniel Roux, Elliptic Gaussian random processes, Rev. Mat. Iberoamericana 13 (1997), no. 1, 19–90 (English, with English and French summaries). MR 1462329, DOI 10.4171/RMI/217
Albert Benassi, Serge Cohen, and Jacques Istas, Identification and properties of real harmonizable fractional Lévy motions, Bernoulli 8 (2002), no. 1, 97–115. MR 1884160
Hermine Biermé, Mark M. Meerschaert, and Hans-Peter Scheffler, Operator scaling stable random fields, Stochastic Process. Appl. 117 (2007), no. 3, 312–332. MR 2290879, DOI 10.1016/j.spa.2006.07.004
L. Breiman, On some limit theorems similar to the arc-sin law, Teor. Verojatnost. i Primenen. 10 (1965), 351–360 (English, with Russian summary). MR 0184274
D. B. H. Cline and G. Samorodnitsky, Subexponentiality of the product of independent random variables, Stochastic Process. Appl. 49 (1994), no. 1, 75–98. MR 1258283, DOI 10.1016/0304-4149(94)90113-9
Serge Cohen and Jacques Istas, Fractional fields and applications, Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 73, Springer, Heidelberg, 2013. With a foreword by Stéphane Jaffard. MR 3088856, DOI 10.1007/978-3-642-36739-7
Clément Dombry and Ingemar Kaj, The on-off network traffic model under intermediate scaling, Queueing Syst. 69 (2011), no. 1, 29–44. MR 2835229, DOI 10.1007/s11134-011-9231-4
Raimundas Gaigalas, A Poisson bridge between fractional Brownian motion and stable Lévy motion, Stochastic Process. Appl. 116 (2006), no. 3, 447–462. MR 2199558, DOI 10.1016/j.spa.2005.10.003
Raimundas Gaigalas and Ingemar Kaj, Convergence of scaled renewal processes and a packet arrival model, Bernoulli 9 (2003), no. 4, 671–703. MR 1996275, DOI 10.3150/bj/1066223274
Marc G. Genton, Olivier Perrin, and Murad S. Taqqu, Self-similarity and Lamperti transformation for random fields, Stoch. Models 23 (2007), no. 3, 397–411. MR 2341075, DOI 10.1080/15326340701471018
David Heath, Sidney Resnick, and Gennady Samorodnitsky, Heavy tails and long range dependence in ON/OFF processes and associated fluid models, Math. Oper. Res. 23 (1998), no. 1, 145–165. MR 1606462, DOI 10.1287/moor.23.1.145
I. A. Ibragimov and Yu. V. Linnik, Independent and stationary sequences of random variables, Wolters-Noordhoff Publishing, Groningen, 1971. With a supplementary chapter by I. A. Ibragimov and V. V. Petrov; Translation from the Russian edited by J. F. C. Kingman. MR 0322926
Alexander Iksanov, Renewal theory for perturbed random walks and similar processes, Probability and its Applications, Birkhäuser/Springer, Cham, 2016. MR 3585464, DOI 10.1007/978-3-319-49113-4
Alexander Iksanov, Alexander Marynych, and Matthias Meiners, Asymptotics of random processes with immigration I: Scaling limits, Bernoulli 23 (2017), no. 2, 1233–1278. MR 3606765, DOI 10.3150/15-BEJ776
I. Kaj, Limiting fractal random processes in heavy-tailed systems, In: Levy-Vehel, J., Lutton, E. (eds.), Fractals in Engineering, New Trends in Theory and Applications, Springer, London, 2005, pp. 199–218.
Ingemar Kaj and Murad S. Taqqu, Convergence to fractional Brownian motion and to the Telecom process: the integral representation approach, In and out of equilibrium. 2, Progr. Probab., vol. 60, Birkhäuser, Basel, 2008, pp. 383–427. MR 2477392, DOI 10.1007/978-3-7643-8786-0_{1}9
Remigijus Leipus, Vygantas Paulauskas, and Donatas Surgailis, On a random-coefficient AR(1) process with heavy-tailed renewal switching coefficient and heavy-tailed noise, J. Appl. Probab. 43 (2006), no. 2, 421–440. MR 2248574, DOI 10.1239/jap/1152413732
Remigijus Leipus and Donatas Surgailis, On long-range dependence in regenerative processes based on a general ON/OFF scheme, J. Appl. Probab. 44 (2007), no. 2, 379–392. MR 2340205, DOI 10.1239/jap/1183667408
Remigijus Leipus, Anne Philippe, Vytautė Pilipauskaitė, and Donatas Surgailis, Sample covariances of random-coefficient AR(1) panel model, Electron. J. Stat. 13 (2019), no. 2, 4527–4572. MR 4029802, DOI 10.1214/19-EJS1632
Alexander Marynych and Glib Verovkin, A functional limit theorem for random processes with immigration in the case of heavy tails, Mod. Stoch. Theory Appl. 4 (2017), no. 2, 93–108. MR 3668776, DOI 10.15559/17-VMSTA76
A. De Meyer and J. L. Teugels, On the asymptotic behaviour of the distributions of the busy period and service time in M/G/1, J. Appl. Probab. 17 (1980), no. 3, 802–813. MR 580039, DOI 10.2307/3212973
Thomas Mikosch, Sidney Resnick, Holger Rootzén, and Alwin Stegeman, Is network traffic approximated by stable Lévy motion or fractional Brownian motion?, Ann. Appl. Probab. 12 (2002), no. 1, 23–68. MR 1890056, DOI 10.1214/aoap/1015961155
Thomas Mikosch and Gennady Samorodnitsky, Scaling limits for cumulative input processes, Math. Oper. Res. 32 (2007), no. 4, 890–918. MR 2363203, DOI 10.1287/moor.1070.0267
Thomas Mikosch and Olivier Wintenberger, Precise large deviations for dependent regularly varying sequences, Probab. Theory Related Fields 156 (2013), no. 3-4, 851–887. MR 3078288, DOI 10.1007/s00440-012-0445-0
K. Park and W. Willinger, Self-similar network traffic and performance evaluations, Wiley, New York, 2000.
Vytautė Pilipauskaitė, Viktor Skorniakov, and Donatas Surgailis, Joint temporal and contemporaneous aggregation of random-coefficient AR(1) processes with infinite variance, Adv. in Appl. Probab. 52 (2020), no. 1, 237–265. MR 4092813, DOI 10.1017/apr.2019.59
Vytautė Pilipauskaitė and Donatas Surgailis, Joint temporal and contemporaneous aggregation of random-coefficient AR(1) processes, Stochastic Process. Appl. 124 (2014), no. 2, 1011–1035. MR 3138604, DOI 10.1016/j.spa.2013.10.004
Vytautė Pilipauskaitė and Donatas Surgailis, Joint aggregation of random-coefficient AR(1) processes with common innovations, Statist. Probab. Lett. 101 (2015), 73–82. MR 3332835, DOI 10.1016/j.spl.2015.03.002
Vytautė Pilipauskaitė and Donatas Surgailis, Anisotropic scaling of the random grain model with application to network traffic, J. Appl. Probab. 53 (2016), no. 3, 857–879. MR 3570099, DOI 10.1017/jpr.2016.45
Vytautė Pilipauskaitė and Donatas Surgailis, Scaling transition for nonlinear random fields with long-range dependence, Stochastic Process. Appl. 127 (2017), no. 8, 2751–2779. MR 3660890, DOI 10.1016/j.spa.2016.12.011
Vytautė Pilipauskaitė and Donatas Surgailis, Scaling limits of linear random fields on Z2 with general dependence axis, In and out of equilibrium 3. Celebrating Vladas Sidoravicius, Progr. Probab., vol. 77, Birkhäuser/Springer, Cham, [2021] ©2021, pp. 683–710. MR 4237288
Vladas Pipiras, Murad S. Taqqu, and Joshua B. Levy, Slow, fast and arbitrary growth conditions for renewal-reward processes when both the renewals and the rewards are heavy-tailed, Bernoulli 10 (2004), no. 1, 121–163. MR 2044596, DOI 10.3150/bj/1077544606
Vladas Pipiras and Murad S. Taqqu, Small and large scale asymptotics of some Lévy stochastic integrals, Methodol. Comput. Appl. Probab. 10 (2008), no. 2, 299–314. MR 2399685, DOI 10.1007/s11009-007-9052-4
John W. Pratt, On interchanging limits and integrals, Ann. Math. Statist. 31 (1960), 74–77. MR 123673, DOI 10.1214/aoms/1177705988
Donata Puplinskaitė and Donatas Surgailis, Aggregation of autoregressive random fields and anisotropic long-range dependence, Bernoulli 22 (2016), no. 4, 2401–2441. MR 3498033, DOI 10.3150/15-BEJ733
Donata Puplinskaitė and Donatas Surgailis, Scaling transition for long-range dependent Gaussian random fields, Stochastic Process. Appl. 125 (2015), no. 6, 2256–2271. MR 3322863, DOI 10.1016/j.spa.2014.12.011
Balram S. Rajput and Jan Rosiński, Spectral representations of infinitely divisible processes, Probab. Theory Related Fields 82 (1989), no. 3, 451–487. MR 1001524, DOI 10.1007/BF00339998
Gennady Samorodnitsky, Stochastic processes and long range dependence, Springer Series in Operations Research and Financial Engineering, Springer, Cham, 2016. MR 3561100, DOI 10.1007/978-3-319-45575-4
Ken-iti Sato, Lévy processes and infinitely divisible distributions, Cambridge Studies in Advanced Mathematics, vol. 68, Cambridge University Press, Cambridge, 1999. Translated from the 1990 Japanese original; Revised by the author. MR 1739520
Donatas Surgailis, Scaling transition and edge effects for negatively dependent linear random fields on Z2, Stochastic Process. Appl. 130 (2020), no. 12, 7518–7546. MR 4167214, DOI 10.1016/j.spa.2020.08.005
M.S. Taqqu, W. Willinger and R. Sherman, Proof of a fundamental result in self-similar traffic modeling, Comput. Commun. Rev. 27 (1997), no. 2, 5–23.
Hermann Thorisson, Coupling, stationarity, and regeneration, Probability and its Applications (New York), Springer-Verlag, New York, 2000. MR 1741181, DOI 10.1007/978-1-4612-1236-2
W. Willinger, M.S. Taqqu, M. Leland and D. Wilson, Self-similarity through high-variability: statistical analysis of Ethernet LAN traffic at the source level, IEEE/ACM Trans. Networking* 5 (1997), 71–86.
A. P. Zwart, Tail asymptotics for the busy period in the GI/G/1 queue, Math. Oper. Res. 26 (2001), no. 3, 485–493. MR 1849881, DOI 10.1287/moor.26.3.485.10584