A Journal "Theory of Probability and Mathematical Statistics"
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



Asymptotic results for certain first-passage times and areas of renewal processes

Claudio Macci and Barbara Pacchiarotti

Link

Abstract: We consider the process {x-N(t): t≥0}, where x∈R+ and {N(t): t≥0} is a renewal process with light-tailed distributed holding times. We are interested in the joint distribution of (τ(x),A(x)) where τ(x) is the first-passage time of {x-N(t): t≥0} to reach zero or a negative value, and A(x)=∫0τ(x-N(t))dt is the corresponding first-passage (positive) area swept out by the process {x-N(t): t≥0}. We remark that we can define the sequence {(τ(n),A(n)): n≥1} by referring to the concept of integrated random walk. Our aim is to prove asymptotic results as x→∞ in the fashion of large (and moderate) deviations.

Keywords: Large deviations, moderate deviations, joint distribution, integrated random walk

Bibliography:
Mario Abundo, On the first-passage area of a one-dimensional jump-diffusion process, Methodol. Comput. Appl. Probab. 15 (2013), no. 1, 85–103. MR 3030212, DOI 10.1007/s11009-011-9223-1
Mario Abundo and Danilo Del Vescovo, On the joint distribution of first-passage time and first-passage area of drifted Brownian motion, Methodol. Comput. Appl. Probab. 19 (2017), no. 3, 985–996. MR 3683981, DOI 10.1007/s11009-017-9546-7
Mario Abundo and Sara Furia, Joint distribution of first-passage time and first-passage area of certain Lévy processes, Methodol. Comput. Appl. Probab. 21 (2019), no. 4, 1283–1302. MR 4029242, DOI 10.1007/s11009-018-9677-5
Marek Arendarczyk, Krzysztof Dȩbicki, and Michel Mandjes, On the tail asymptotics of the area swept under the Brownian storage graph, Bernoulli 20 (2014), no. 2, 395–415. MR 3178504, DOI 10.3150/12-BEJ491
D.S. Bates, Jumps and stochastic volatility: exchange rate processes implicit in Deutsche mark options, The Review of Financial Studies 9 (1996), no. 1, 69–107.
J. Blanchet and M. Mandjes, Asymptotics of the area under the graph of a Lévy-driven workload process, Oper. Res. Lett. 41 (2013), no. 6, 730–736. MR 3131857, DOI 10.1016/j.orl.2013.10.004
Stephen A. Book, Large deviation probabilities for weighted sums, Ann. Math. Statist. 43 (1972), 1221–1234. MR 331486, DOI 10.1214/aoms/1177692474
A. A. Borovkov, O. J. Boxma, and Z. Palmowski, On the integral of the workload process of the single server queue, J. Appl. Probab. 40 (2003), no. 1, 200–225. MR 1953775, DOI 10.1017/s0021900200022348
Narasinga R. Chaganty, Large deviations for joint distributions and statistical applications, Sankhyā Ser. A 59 (1997), no. 2, 147–166. MR 1665683
Amir Dembo and Ofer Zeitouni, Large deviations techniques and applications, 2nd ed., Applications of Mathematics (New York), vol. 38, Springer-Verlag, New York, 1998. MR 1619036, DOI 10.1007/978-1-4612-5320-4
Denis Denisov, Elena Perfilev, and Vitali Wachtel, Tail asymptotics for the area under the excursion of a random walk with heavy-tailed increments, J. Appl. Probab. 58 (2021), no. 1, 217–237. MR 4222426, DOI 10.1017/jpr.2020.85
Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal, Fundamentals of convex analysis, Grundlehren Text Editions, Springer-Verlag, Berlin, 2001. Abridged version of Convex analysis and minimization algorithms. I [Springer, Berlin, 1993; MR1261420 (95m:90001)] and II [ibid.; MR1295240 (95m:90002)]. MR 1865628, DOI 10.1007/978-3-642-56468-0
P. Jorion, On jump processes in the foreign exchange and stock markets, The Review of Financial Studies 1 (1988), no. 4, 427–445.
Michael J. Kearney, Satya N. Majumdar, and Richard J. Martin, The first-passage area for drifted Brownian motion and the moments of the Airy distribution, J. Phys. A 40 (2007), no. 36, F863–F869. MR 2396208, DOI 10.1088/1751-8113/40/36/F03
Michael J. Kearney, Andrew J. Pye, and Richard J. Martin, On correlations between certain random variables associated with first passage Brownian motion, J. Phys. A 47 (2014), no. 22, 225002, 11. MR 3208169, DOI 10.1088/1751-8113/47/22/225002
Frank B. Knight, The moments of the area under reflected Brownian bridge conditional on its local time at zero, J. Appl. Math. Stochastic Anal. 13 (2000), no. 2, 99–124. MR 1768498, DOI 10.1155/S1048953300000137
S. G. Kou and Hui Wang, First passage times of a jump diffusion process, Adv. in Appl. Probab. 35 (2003), no. 2, 504–531. MR 1970485, DOI 10.1239/aap/1051201658
Elena Perfilev and Vitali Wachtel, Local asymptotics for the area under the random walk excursion, Adv. in Appl. Probab. 50 (2018), no. 2, 600–620. MR 3832886, DOI 10.1017/apr.2018.26
Mihael Perman and Jon A. Wellner, On the distribution of Brownian areas, Ann. Appl. Probab. 6 (1996), no. 4, 1091–1111. MR 1422979, DOI 10.1214/aoap/1035463325
R. Rudzkis, L. Saulis, and V. Statuljavičus, Large deviations for sums of independent random variables, Litovsk. Mat. Sb. 19 (1979), no. 1, 169–179, 232 (Russian, with English and Lithuanian summaries). MR 537824