A Journal "Theory of Probability and Mathematical Statistics"
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



Gaussian Volterra processes: Asymptotic growth and statistical estimation

Yuliya Mishura, Kostiantyn Ralchenko and Sergiy Shklyar

Link

Abstract: The paper is devoted to three-parametric self-similar Gaussian Volterra processes that generalize fractional Brownian motion. We study the asymptotic growth of such processes and the properties of long- and short-range dependence. Then we consider the problem of the drift parameter estimation for Ornstein–Uhlenbeck process driven by Gaussian Volterra process under consideration. We construct a strongly consistent estimator and investigate its asymptotic properties. Namely, we prove that it has the Cauchy asymptotic distribution.

Keywords: Gaussian Volterra process, asymptotic growth, long- and short-range dependence, parameter estimation, Ornstein–Uhlenbeck process

Bibliography:
George E. Andrews, Richard Askey, and Ranjan Roy, Special functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge, 1999. MR 1688958, DOI 10.1017/CBO9781107325937
Antoine Ayache and Jacques Levy Vehel, The generalized multifractional Brownian motion, Stat. Inference Stoch. Process. 3 (2000), no. 1-2, 7–18. 19th “Rencontres Franco-Belges de Statisticiens” (Marseille, 1998). MR 1819282, DOI 10.1023/A:1009901714819
R. Belfadli, K. Es-Sebaiy, and Y. Ouknine, Parameter estimation for fractional Ornstein–Uhlenbeck processes: non-ergodic case, Frontiers in Science and Engineering 1 (2011), 1–16.
Konstantin Borovkov, Yuliya Mishura, Alexander Novikov, and Mikhail Zhitlukhin, Bounds for expected maxima of Gaussian processes and their discrete approximations, Stochastics 89 (2017), no. 1, 21–37. MR 3574693, DOI 10.1080/17442508.2015.1126282
Mohamed El Machkouri, Khalifa Es-Sebaiy, and Youssef Ouknine, Least squares estimator for non-ergodic Ornstein-Uhlenbeck processes driven by Gaussian processes, J. Korean Statist. Soc. 45 (2016), no. 3, 329–341. MR 3527650, DOI 10.1016/j.jkss.2015.12.001
Paul Embrechts and Makoto Maejima, Selfsimilar processes, Princeton Series in Applied Mathematics, Princeton University Press, Princeton, NJ, 2002. MR 1920153
John Lamperti, Semi-stable stochastic processes, Trans. Amer. Math. Soc. 104 (1962), 62–78. MR 138128, DOI 10.1090/S0002-9947-1962-0138128-7
M. B. Marcus, Upper bounds for the asymptotic maxima of continuous Gaussian processes, Ann. Math. Statist. 43 (1972), 522–533. MR 388519, DOI 10.1214/aoms/1177692633
Y. Mishura, G. Shevchenko, and S. Shklyar, Gaussian processes with Volterra kernels, Stochastic Processes, Statistical Methods, and Engineering Mathematics. SPAS 2019 (S. Silvestrov, A. Malyarenko, Y. Ni, and M. Rančić, eds.), Springer, Cham, 2022, pp. 249–276.
Yuliya Mishura and Sergiy Shklyar, Gaussian Volterra processes with power-type kernels. Part I, Mod. Stoch. Theory Appl. 9 (2022), no. 3, 313–338. MR 4462026, DOI 10.15559/22-VMSTA205
Yuliya Mishura and Sergiy Shklyar, Gaussian Volterra processes with power-type kernels. Part II, Mod. Stoch. Theory Appl. 9 (2022), no. 4, 431–452. MR 4510382, DOI 10.15559/22-VMSTA211
Ilkka Norros, Esko Valkeila, and Jorma Virtamo, An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions, Bernoulli 5 (1999), no. 4, 571–587. MR 1704556, DOI 10.2307/3318691
K. V. Ral′chenko, Approximation of multifractional Brownian motion by absolutely continuous processes, Teor. Ĭmovīr. Mat. Stat. 82 (2010), 115–127 (Ukrainian, with English, Russian and Ukrainian summaries); English transl., Theory Probab. Math. Statist. 82 (2011), 115–127. MR 2790487, DOI 10.1090/S0094-9000-2011-00831-9
Tommi Sottinen and Lauri Viitasaari, Stochastic analysis of Gaussian processes via Fredholm representation, Int. J. Stoch. Anal. , posted on (2016), Art. ID 8694365, 15. MR 3536393, DOI 10.1155/2016/8694365
Adil Yazigi, Representation of self-similar Gaussian processes, Statist. Probab. Lett. 99 (2015), 94–100. MR 3321501, DOI 10.1016/j.spl.2015.01.012