Theory of Probability and Mathematical Statistics
Gaussian Volterra processes: Asymptotic growth and statistical estimation
Yuliya Mishura, Kostiantyn Ralchenko and Sergiy Shklyar
Link
Abstract: The paper is devoted to three-parametric self-similar Gaussian Volterra processes that generalize fractional Brownian motion. We study the asymptotic growth of such processes and the properties of long- and short-range dependence. Then we consider the problem of the drift parameter estimation for Ornstein–Uhlenbeck process driven by Gaussian Volterra process under consideration. We construct a strongly consistent estimator and investigate its asymptotic properties. Namely, we prove that it has the Cauchy asymptotic distribution.
Keywords: Gaussian Volterra process, asymptotic growth, long- and short-range dependence, parameter estimation, Ornstein–Uhlenbeck process
Bibliography: George E. Andrews, Richard Askey, and Ranjan Roy, Special functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge, 1999. MR 1688958, DOI 10.1017/CBO9781107325937
Antoine Ayache and Jacques Levy Vehel, The generalized multifractional Brownian motion, Stat. Inference Stoch. Process. 3 (2000), no. 1-2, 7–18. 19th “Rencontres Franco-Belges de Statisticiens” (Marseille, 1998). MR 1819282, DOI 10.1023/A:1009901714819
R. Belfadli, K. Es-Sebaiy, and Y. Ouknine, Parameter estimation for fractional Ornstein–Uhlenbeck processes: non-ergodic case, Frontiers in Science and Engineering 1 (2011), 1–16.
Konstantin Borovkov, Yuliya Mishura, Alexander Novikov, and Mikhail Zhitlukhin, Bounds for expected maxima of Gaussian processes and their discrete approximations, Stochastics 89 (2017), no. 1, 21–37. MR 3574693, DOI 10.1080/17442508.2015.1126282
Mohamed El Machkouri, Khalifa Es-Sebaiy, and Youssef Ouknine, Least squares estimator for non-ergodic Ornstein-Uhlenbeck processes driven by Gaussian processes, J. Korean Statist. Soc. 45 (2016), no. 3, 329–341. MR 3527650, DOI 10.1016/j.jkss.2015.12.001
Paul Embrechts and Makoto Maejima, Selfsimilar processes, Princeton Series in Applied Mathematics, Princeton University Press, Princeton, NJ, 2002. MR 1920153
John Lamperti, Semi-stable stochastic processes, Trans. Amer. Math. Soc. 104 (1962), 62–78. MR 138128, DOI 10.1090/S0002-9947-1962-0138128-7
M. B. Marcus, Upper bounds for the asymptotic maxima of continuous Gaussian processes, Ann. Math. Statist. 43 (1972), 522–533. MR 388519, DOI 10.1214/aoms/1177692633
Y. Mishura, G. Shevchenko, and S. Shklyar, Gaussian processes with Volterra kernels, Stochastic Processes, Statistical Methods, and Engineering Mathematics. SPAS 2019 (S. Silvestrov, A. Malyarenko, Y. Ni, and M. Rančić, eds.), Springer, Cham, 2022, pp. 249–276.
Yuliya Mishura and Sergiy Shklyar, Gaussian Volterra processes with power-type kernels. Part I, Mod. Stoch. Theory Appl. 9 (2022), no. 3, 313–338. MR 4462026, DOI 10.15559/22-VMSTA205
Yuliya Mishura and Sergiy Shklyar, Gaussian Volterra processes with power-type kernels. Part II, Mod. Stoch. Theory Appl. 9 (2022), no. 4, 431–452. MR 4510382, DOI 10.15559/22-VMSTA211
Ilkka Norros, Esko Valkeila, and Jorma Virtamo, An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions, Bernoulli 5 (1999), no. 4, 571–587. MR 1704556, DOI 10.2307/3318691
K. V. Ral′chenko, Approximation of multifractional Brownian motion by absolutely continuous processes, Teor. Ĭmovīr. Mat. Stat. 82 (2010), 115–127 (Ukrainian, with English, Russian and Ukrainian summaries); English transl., Theory Probab. Math. Statist. 82 (2011), 115–127. MR 2790487, DOI 10.1090/S0094-9000-2011-00831-9
Tommi Sottinen and Lauri Viitasaari, Stochastic analysis of Gaussian processes via Fredholm representation, Int. J. Stoch. Anal. , posted on (2016), Art. ID 8694365, 15. MR 3536393, DOI 10.1155/2016/8694365
Adil Yazigi, Representation of self-similar Gaussian processes, Statist. Probab. Lett. 99 (2015), 94–100. MR 3321501, DOI 10.1016/j.spl.2015.01.012