Theory of Probability and Mathematical Statistics
On quadratic variations for the fractional-white wave equation
Radomyra Shevchenko
Link
Abstract: This paper studies the behaviour of quadratic variations of a stochastic wave equation driven by a noise that is white in space and fractional in time. Complementing the analysis of quadratic variations in the space component carried out in [Correlation structure, quadratic variations and parameter estimation for the solution to the wave equation with fractional noise, Electron. J. Stat. 12 (2018), no. 2, 3639–3672] and [Generalized k-variations and Hurst parameter estimation for the fractional wave equation via Malliavin calculus, J. Statist. Plann. Inference 207 (2020), 155–180], it focuses on the time component of the solution process. For different values of the Hurst parameter a central and a noncentral limit theorems are proved, allowing to construct parameter estimators and compare them to the findings in the space-dependent case. Finally, rectangular quadratic variations in the white noise case are studied and a central limit theorem is demonstrated.
Keywords: Hurst parameter estimation, fractional Brownian motion, stochastic wave equation, quadratic variations, Stein–Malliavin calculus
Bibliography: Randolf Altmeyer, Till Bretschneider, Josef Janák, and Markus Reiß, Parameter estimation in an SPDE model for cell repolarization, SIAM/ASA J. Uncertain. Quantif. 10 (2022), no. 1, 179–199. MR 4376300, DOI 10.1137/20M1373347
Shuyang Bai and Murad S. Taqqu, Behavior of the generalized Rosenblatt process at extreme critical exponent values, Ann. Probab. 45 (2017), no. 2, 1278–1324. MR 3630299, DOI 10.1214/15-AOP1087
Markus Bibinger and Mathias Trabs, On central limit theorems for power variations of the solution to the stochastic heat equation, Stochastic models, statistics and their applications, Springer Proc. Math. Stat., vol. 294, Springer, Cham, [2019] ©2019, pp. 69–84. MR 4043170
C. Chong and R. C. Dalang, Power variations in fractional Sobolev spaces for a class of parabolic stochastic PDEs, Bernoulli (in press), https://doi.org/10.48550/arXiv.2006.15817.
Igor Cialenco, Statistical inference for SPDEs: an overview, Stat. Inference Stoch. Process. 21 (2018), no. 2, 309–329. MR 3824970, DOI 10.1007/s11203-018-9177-9
Jorge Clarke de la Cerda and Ciprian A. Tudor, Hitting times for the stochastic wave equation with fractional colored noise, Rev. Mat. Iberoam. 30 (2014), no. 2, 685–709. MR 3231213, DOI 10.4171/RMI/796
Florian Hildebrandt and Mathias Trabs, Parameter estimation for SPDEs based on discrete observations in time and space, Electron. J. Stat. 15 (2021), no. 1, 2716–2776. MR 4280160, DOI 10.1214/21-ejs1848
Marwa Khalil and Ciprian A. Tudor, Correlation structure, quadratic variations and parameter estimation for the solution to the wave equation with fractional noise, Electron. J. Stat. 12 (2018), no. 2, 3639–3672. MR 3870508, DOI 10.1214/18-ejs1488
M. Khalil, C. A. Tudor, and M. Zili, Spatial variation for the solution to the stochastic linear wave equation driven by additive space-time white noise, Stoch. Dyn. 18 (2018), no. 5, 1850036, 20. MR 3853264, DOI 10.1142/S0219493718500363
David Nualart, The Malliavin calculus and related topics, 2nd ed., Probability and its Applications (New York), Springer-Verlag, Berlin, 2006. MR 2200233
Gregor Pasemann, Sven Flemming, Sergio Alonso, Carsten Beta, and Wilhelm Stannat, Diffusivity estimation for activator-inhibitor models: theory and application to intracellular dynamics of the actin cytoskeleton, J. Nonlinear Sci. 31 (2021), no. 3, Paper No. 59, 34. MR 4255684, DOI 10.1007/s00332-021-09714-4
Giovanni Peccati and Ciprian A. Tudor, Gaussian limits for vector-valued multiple stochastic integrals, Séminaire de Probabilités XXXVIII, Lecture Notes in Math., vol. 1857, Springer, Berlin, 2005, pp. 247–262. MR 2126978, DOI 10.1007/978-3-540-31449-3_{1}7
Radomyra Shevchenko, Meryem Slaoui, and C. A. Tudor, Generalized k-variations and Hurst parameter estimation for the fractional wave equation via Malliavin calculus, J. Statist. Plann. Inference 207 (2020), 155–180. MR 4066122, DOI 10.1016/j.jspi.2019.10.008
Ciprian A. Tudor, Analysis of variations for self-similar processes, Probability and its Applications (New York), Springer, Cham, 2013. A stochastic calculus approach. MR 3112799, DOI 10.1007/978-3-319-00936-0