Theory of Probability and Mathematical Statistics
Distribution of the product of a Wishart matrix and a normal vector
Koshiro Yonenaga and Akio Suzukawa
Link
Abstract: We consider the distribution of the product of a Wishart matrix and a normal vector with uncommon covariance matrices. We derive the stochastic representation which reduces the computational burden for the generation of realizations of the product. Using this representation, the density function and higher order moments of the product are derived. In a numerical illustration, we investigate some properties of the distribution of the product. We further suggest the Edgeworth type expansions for the product, and we observe that the suggested approximations provide a good performance for moderately large degrees of freedom of a Wishart matrix.
Keywords: Wishart distribution, multivariate normal distribution, moment
Bibliography: David Bauder, Taras Bodnar, Stepan Mazur, and Yarema Okhrin, Bayesian inference for the tangent portfolio, Int. J. Theor. Appl. Finance 21 (2018), no. 8, 1850054, 27. MR 3897158, DOI 10.1142/S0219024918500541
Taras Bodnar, Stepan Mazur, and Yarema Okhrin, On the exact and approximate distributions of the product of a Wishart matrix with a normal vector, J. Multivariate Anal. 122 (2013), 70–81. MR 3189308, DOI 10.1016/j.jmva.2013.07.007
Taras Bodnar and Yarema Okhrin, Properties of the singular, inverse and generalized inverse partitioned Wishart distributions, J. Multivariate Anal. 99 (2008), no. 10, 2389–2405. MR 2463397, DOI 10.1016/j.jmva.2008.02.024
Taras Bodnar and Yarema Okhrin, On the product of inverse Wishart and normal distributions with applications to discriminant analysis and portfolio theory, Scand. J. Stat. 38 (2011), no. 2, 311–331. MR 2829602, DOI 10.1111/j.1467-9469.2011.00729.x
T. Bodnar, S. Mazur, and Y. Okhrin, Distribution of the product of singular Wishart matrix and normal vector, Teor. Ĭmovīr. Mat. Stat. 91 (2014), 1–14; English transl., Theory Probab. Math. Statist. 91 (2015), 1–15. MR 3364119, DOI 10.1090/tpms/962
Taras Bodnar, Stepan Mazur, and Krzysztof Podgórski, Singular inverse Wishart distribution and its application to portfolio theory, J. Multivariate Anal. 143 (2016), 314–326. MR 3431434, DOI 10.1016/j.jmva.2015.09.021
T. Bodnar, S. Mazur, E. Ngailo, and N. Parolya, Discriminant analysis in small and large dimensions, Teor. Ĭmovīr. Mat. Stat. 100 (2019), 24–42 (English, with English, Russian and Ukrainian summaries); English transl., Theory Probab. Math. Statist. 100 (2020), 21–41. MR 3992991, DOI 10.1090/tpms/1096
T. Bodnar, S. Mazur, S. Muhinyuza, and N. Parolya, On the product of a singular Wishart matrix and a singular Gaussian vector in high dimension, Teor. Ĭmovīr. Mat. Stat. 99 (2018), 37–50 (English, with English, Russian and Ukrainian summaries); English transl., Theory Probab. Math. Statist. 99 (2019), 39–52. MR 3908654, DOI 10.1090/tpms/1078
Taras Bodnar, Stepan Mazur, and Nestor Parolya, Central limit theorems for functionals of large sample covariance matrix and mean vector in matrix-variate location mixture of normal distributions, Scand. J. Stat. 46 (2019), no. 2, 636–660. MR 3948571, DOI 10.1111/sjos.12383
José A. Díaz-García, Ramón Gutierrez Jáimez, and Kanti V. Mardia, Wishart and pseudo-Wishart distributions and some applications to shape theory, J. Multivariate Anal. 63 (1997), no. 1, 73–87. MR 1491567, DOI 10.1006/jmva.1997.1689
Yasunori Fujikoshi, Error bounds for asymptotic expansions of the distribution of the MLE in a GMANOVA model, Ann. Inst. Statist. Math. 39 (1987), no. 1, 153–161. MR 886513, DOI 10.1007/BF02491456
A. K. Gupta and D. K. Nagar, Matrix variate distributions, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, vol. 104, Chapman & Hall/CRC, Boca Raton, FL, 2000. MR 1738933
Arjun K. Gupta, Tamas Varga, and Taras Bodnar, Elliptically contoured models in statistics and portfolio theory, 2nd ed., Springer, New York, 2013. MR 3112145, DOI 10.1007/978-1-4614-8154-6
L. R. Haff, An identity for the Wishart distribution with applications, J. Multivariate Anal. 9 (1979), no. 4, 531–544. MR 556910, DOI 10.1016/0047-259X(79)90056-3
Peter D. Hoff, A first course in Bayesian statistical methods, Springer Texts in Statistics, Springer, New York, 2009. MR 2648134, DOI 10.1007/978-0-387-92407-6
L. Isserlis, On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables, Biometrika. 12 (1918), 134–139.
Farrukh Javed, Stepan Mazur, and Edward Ngailo, Higher order moments of the estimated tangency portfolio weights, J. Appl. Stat. 48 (2021), no. 3, 517–535. MR 4205986, DOI 10.1080/02664763.2020.1736523
F. Javed, N. Loperdo and S. Mazur, Edgeworth expansions for multivariate random sums. Econ. Stat. (2021), DOI 10.1016/j.ecosta.2021.04.005.
Raymond Kan, From moments of sum to moments of product, J. Multivariate Anal. 99 (2008), no. 3, 542–554. MR 2396978, DOI 10.1016/j.jmva.2007.01.013
I. Kotsiuba and S. Mazur, On the asymptotic and approximate distributions of the product of an inverse Wishart matrix and a Gaussian vector, Teor. Ĭmovīr. Mat. Stat. 93 (2015), 95–104 (English, with English, Russian and Ukrainian summaries); English transl., Theory Probab. Math. Statist. 93 (2016), 103–112. MR 3553443, DOI 10.1090/tpms/1004
Tõnu Kollo and Dietrich von Rosen, Advanced multivariate statistics with matrices, Mathematics and Its Applications (New York), vol. 579, Springer, Dordrecht, 2005. MR 2162145, DOI 10.1007/1-4020-3419-9
Tatsuya Kubokawa, Masashi Hyodo, and Muni S. Srivastava, Asymptotic expansion and estimation of EPMC for linear classification rules in high dimension, J. Multivariate Anal. 115 (2013), 496–515. MR 3004572, DOI 10.1016/j.jmva.2012.11.001
Gérard Letac and Hélène Massam, All invariant moments of the Wishart distribution, Scand. J. Statist. 31 (2004), no. 2, 295–318. MR 2066255, DOI 10.1111/j.1467-9469.2004.01-043.x
A. M. Mathai and Serge B. Provost, Quadratic forms in random variables, Statistics: Textbooks and Monographs, vol. 126, Marcel Dekker, Inc., New York, 1992. Theory and applications. MR 1192786
Robb J. Muirhead, Aspects of multivariate statistical theory, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1982. MR 652932, DOI 10.1002/9780470316559
M. S. Srivastava, Singular Wishart and multivariate beta distributions, Ann. Statist. 31 (2003), no. 5, 1537–1560. MR 2012825, DOI 10.1214/aos/1065705118
Dietrich von Rosen, Moments for the inverted Wishart distribution, Scand. J. Statist. 15 (1988), no. 2, 97–109. MR 968156
Dietrich von Rosen, Moments of maximum likelihood estimators in the growth curve model, Statistics 22 (1991), no. 1, 111–131. MR 1097365, DOI 10.1080/02331889108802291
Dietrich von Rosen, Distribution and density approximations of a maximum likelihood estimator in the growth curve model, Statistics 29 (1997), no. 1, 37–59. MR 1438532, DOI 10.1080/02331889708802573