Theory of Probability and Mathematical Statistics
Stochastic differential equations with discontinuous diffusion coefficients
Soledad Torres and Lauri Viitasaari
Link
Abstract: We study one-dimensional stochastic differential equations of the form dXt=σ(Xt)dYt, where Y is a suitable Hölder continuous driver such as the fractional Brownian motion BH with H>1/2. The innovative aspect of the present paper lies in the assumptions on diffusion coefficients σ for which we assume very mild conditions. In particular, we allow σ to have discontinuities, and as such our results can be applied to study equations with discontinuous diffusions.
Keywords: Stochastic differential equation, fractional calculus, Hölder continuity, discontinuity, bounded variation
Bibliography: Richard F. Bass and Zhen-Qing Chen, One-dimensional stochastic differential equations with singular and degenerate coefficients, Sankhyā 67 (2005), no. 1, 19–45. MR 2203887
Haim Brezis, Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, New York, 2011. MR 2759829, DOI 10.1007/978-0-387-70914-7
Brahim Boufoussi and Youssef Ouknine, On a SDE driven by a fractional Brownian motion and with monotone drift, Electron. Comm. Probab. 8 (2003), 122–134. MR 2042751, DOI 10.1214/ECP.v8-1084
Zhe Chen, Lasse Leskelä, and Lauri Viitasaari, Pathwise Stieltjes integrals of discontinuously evaluated stochastic processes, Stochastic Process. Appl. 129 (2019), no. 8, 2723–2757. MR 3980142, DOI 10.1016/j.spa.2018.08.002
H. J. Engelbert and W. Schmidt, On one-dimensional stochastic differential equations with generalized drift, Stochastic differential systems (Marseille-Luminy, 1984) Lect. Notes Control Inf. Sci., vol. 69, Springer, Berlin, 1985, pp. 143–155. MR 798317, DOI 10.1007/BFb0005069
H. J. Engelbert and W. Schmidt, On solutions of one-dimensional stochastic differential equations without drift, Z. Wahrsch. Verw. Gebiete 68 (1985), no. 3, 287–314. MR 771468, DOI 10.1007/BF00532642
Johanna Garzón, Jorge A. León, and Soledad Torres, Fractional stochastic differential equation with discontinuous diffusion, Stoch. Anal. Appl. 35 (2017), no. 6, 1113–1123. MR 3740753, DOI 10.1080/07362994.2017.1358643
Michael Hinz, Jonas M. Tölle, and Lauri Viitasaari, Sobolev regularity of occupation measures and paths, variability and compositions, Electron. J. Probab. 27 (2022), Paper No. 73, 29. MR 4440066, DOI 10.1214/22-ejp797
Michael Hinz, Jonas M. Tölle, and Lauri Viitasaari, Sobolev regularity of occupation measures and paths, variability and compositions, Electron. J. Probab. 27 (2022), Paper No. 73, 29. MR 4440066, DOI 10.1214/22-ejp797
Michael Josephy, Composing functions of bounded variation, Proc. Amer. Math. Soc. 83 (1981), no. 2, 354–356. MR 624930, DOI 10.1090/S0002-9939-1981-0624930-9
J.-F. Le Gall, Applications du temps local aux équations différentielles stochastiques unidimensionnelles, Seminar on probability, XVII, Lecture Notes in Math., vol. 986, Springer, Berlin, 1983, pp. 15–31 (French). MR 770393, DOI 10.1007/BFb0068296
Jorge A. León, David Nualart, and Samy Tindel, Young differential equations with power type nonlinearities, Stochastic Process. Appl. 127 (2017), no. 9, 3042–3067. MR 3682123, DOI 10.1016/j.spa.2017.01.007
Yuliya S. Mishura, Stochastic calculus for fractional Brownian motion and related processes, Lecture Notes in Mathematics, vol. 1929, Springer-Verlag, Berlin, 2008. MR 2378138, DOI 10.1007/978-3-540-75873-0
Yu. Mishura and D. Nualart, Weak solutions for stochastic differential equations with additive fractional noise, Statist. Probab. Lett. 70 (2004), no. 4, 253–261. MR 2125162, DOI 10.1016/j.spl.2004.10.011
Shintaro Nakao, On the pathwise uniqueness of solutions of one-dimensional stochastic differential equations, Osaka Math. J. 9 (1972), 513–518. MR 326840
David Nualart and Aurel Răşcanu, Differential equations driven by fractional Brownian motion, Collect. Math. 53 (2002), no. 1, 55–81. MR 1893308
Stefan G. Samko, Anatoly A. Kilbas, and Oleg I. Marichev, Fractional integrals and derivatives, Gordon and Breach Science Publishers, Yverdon, 1993. Theory and applications; Edited and with a foreword by S. M. Nikol′skiĭ; Translated from the 1987 Russian original; Revised by the authors. MR 1347689
Mark S. Veillette and Murad S. Taqqu, Properties and numerical evaluation of the Rosenblatt distribution, Bernoulli 19 (2013), no. 3, 982–1005. MR 3079303, DOI 10.3150/12-BEJ421
M. Zähle, Integration with respect to fractal functions and stochastic calculus. I, Probab. Theory Related Fields 111 (1998), no. 3, 333–374. MR 1640795, DOI 10.1007/s004400050171
Martina Zähle, On the link between fractional and stochastic calculus, Stochastic dynamics (Bremen, 1997) Springer, New York, 1999, pp. 305–325. MR 1678495, DOI 10.1007/0-387-22655-9_{1}3