Theory of Probability and Mathematical Statistics
Comparison theorem for solutions of parabolic stochastic equations with an absorber
S. A. Mel’nik
Download PDF
Abstract: A comparison theorem is proved for solutions of the Cauchy problem for a quasi-linear parabolic stochastic equation. The drift and diffusion coefficients of this equation do not necessarily satisfy the Lipschitz condition. The drift coefficient is assumed to be an absorber.
Keywords: Stochastic partial differential equation, comparison theorem
Bibliography: 1. E. Pardoux, Equations aux derivees partielles stochastiques non lineaires monotones, These doct. math., Univ. Paris. Sud., 1975.
2. N. V. Krylov and B. L. Rozovskiĭ, Stochastic evolution equations, Current Problems in Mathematics, vol. 14, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow, 1979, pp. 71-147. (Russian)
3. C. Prevot and M. Röckner, A Concise Course on Stochastic Partial Differential Equations, Springer, Berlin, 2007.
4. V. M. Radchenko, Properties of integrals with respect to a general stochastic measure in a stochastic heat equation, Teor. Imovirnost. Matem. Statyst. 82 (2010), 104-115; English transl. in Theor. Probability and Math. Statist. 82 (2011), 103-114.
5. V. M. Radchenko, Cable equation with a general stochastic measure, Teor. Imovirnost. Matem. Statyst. 84 (2011), 126-133; English transl. in Theor. Probability and Math. Statist. 84 (2012), 131-138.
6. V. Radchenko, Riemann integral of a random function and the parabolic equation with a general stochastic measure, Teor. Imovirnost. Matem. Statyst. 87 (2012), 163-185; English transl. in Theor. Probability and Math. Statist. 87 (2013), 185-198.
7. A. A. Samarskiĭ, S. P. Galaktionov, S. P. Kurdyumov, and A. P. Mikhaĭlov, Blow-up in Quasilinear Parabolic Equations, Nauka'', Moscow, 1987; English transl., Walter de Gruyter & Co., Berlin, 1995.
8. R. C. Dalang, D. Khoshnevisan, C. Müller, D. Nualart, and Y. Xiao, A Minicourse on Stochastic Partial Differential Equations, Utah, Salt Lake City, 2006.
9. L. Denis, A. Matoussi, and L. Stoica, Maximum principle and comparison theorem for quasi-linear SPDE's, Electronic J. Probab. 14 (2009), no. 19, 500-530.
10. S. Assing, Comparison of systems of stochastic partial differential equations, Stoch. Process. Appl. 82 (1999), 259-282.
11. S. A. Mel'nik, Comparison theorem for solutions of quasi-linear partial stochastic differential equations with weak sources, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki 1 (2011), 13-17. (Russian)
12. Mathematical Encyclopedia, vol. 1, ''Soviet Encyclopedia'', Moscow, 1977. (Russian)
13. N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland Publishing Co., Amsterdam-New York/Kodansha, Ltd., Tokyo, 1981.