Theory of Probability and Mathematical Statistics
An inequality for the coupling moment in the case of two inhomogeneous Markov chains
V. V. Golomozyĭ
Download PDF
Abstract: We consider discrete Markov chains with phase space {0,1,...} and study conditions under which the expectation of the first coupling moment for two independent discrete time inhomogeneous Markov chains is finite. The coupling moment is defined as the first time when both chains simultaneously visit the zero state. Some special cases are considered where a bound for the expectation of the coupling moment is available.
Keywords: Coupling theory, coupling method, maximal coupling, discrete Markov chains, stability of distributions
Bibliography: 1. W. Doeblin, Expose de la theorie des chaines simples constantes de Markov a un nomber fini d'estats, Mathematique de l'Union Interbalkanique 2 (1938), 77-105.
2. W. Feller, An Introduction to Probability Theory and its Applications, vol. 1, John Wiley & Sons, New York, 1966.
3. N. V. Kartashov, Strong Stable Markov Chains, VSP, Utrecht/TViMS Scientific Publishers, Kiev, 1996.
4. N. V. Kartashov, Exponential asymptotics of matrices of the Markov renewal, Asymptotic Problems for Stochastic Processes, Preprint 77-24, Institute of Mathematics of Academy of Science of Ukraine, Kiev, 1977, pp. 2-43. (Russian)
5. E. Nummelin, A splitting technique for Harris recurrent chains, Z. Wahrscheinlichkeitstheorie Verw. Geb. 43 (1978), 309-318.
6. E. Nummelin and R. L. Tweedie, Geometric ergodicity and $ R$-positivity for general Markov chains, Ann. Probab. 6 (1978), 404-420.
7. T. Lindvall, On coupling of discrete renewal sequences, Z. Wahrscheinlichkeitstheorie Verw. Geb. 48 (1979), 57-70.
8. I. N. Kovalenko and N. Ju. Kuznecov, Postroenie vlozhennogo protsessa vosstanovleniya dlya sushchestvenno mnogomernykh protsessov teorii massovogo obsluzhivaniya i ego primenenie k polucheniyu predelnykh teorem, Preprint 80, vol. 12, no. 80-12, Akad. Nauk Ukrain. SSR, Inst. Kibernet., Kiev, 1980. (Russian)
9. P. Ney, A refinement of the coupling method in renewal theory, Stoch. Process. Appl. 11 (1981), 11-26.
10. E. Numemelin and P. Tuominen, Geometric ergodicity of Harris recurrent Markov chains with applications to renewal theory, Stoch. Process. Appl. 12 (1982), 187-202.
11. E. Nummelin, General Irreducible Markov Chains and Nonnegative Operators, Cambridge University Press, Cambridge, 1984.
12. V. M. Zolotarev, Modern Theory of Summation of Independent Random Variables, Nauka'', Moscow, 1986; English transl., VSP, Utrecht, the Netherlands-Tokyo, Japan, 1997.
13. S. T. Rachev, The Monge-Kantorovich problem on mass transfer and its applications in stochastics, Teor. Veroyatnost. i Primenen. 29 (1984), no. 4, 625-653. (Russian)
14. T. Lindvall, Lectures on the Coupling Method, John Wiley and Sons, 1991.
15. S. P. Mayn and R. L. Tweedie, Markov Chains and Stochastic Stability, Springer-Verlag, 1993.
16. P. Tuominen and R. Tweedie, Subgeometric rates of convergence of f-ergodic Markov chains, Adv. Appl. Probab. 26 (1994), 775-798.
17. P. Tuominen and R. L. Tweedie, Subgeometric rates of convergence of f-ergodic Markov Chains, Adv. Appl. Probab. 26 (1994), 775-798.
18. R. L. Tweedie and J. N. Corcoran, Perfect sampling of ergodic Harris chains, Ann. Appl. Probab. 11 (2001), no. 2, 438-451.
19. H. Thorisson, Coupling, Stationarity, and Regeneration, Springer, New York, 2000.
20. S. F. Jarner and G. O. Roberts, Polynomial convergence rates of Markov chains, Ann. Appl. Probab. 12 (2001), 224-247.
21. R. Douc, E. Moulines, and J. S. Rosenthal, Quantitative bounds for geometric convergence rates of Markov chains, Ann. Appl. Probab. 14 (2004), 1643-1664.
22. R. Douc, E. Moulines, and J. S. Rosenthal, Quantitative bounds on convergence of time-inhomogeneous Markov chains, Ann. Appl. Probab. 14 (2004), no. 4, 1643-1665.
23. R. Douc, E. Moulines, and P. Soulier, Practical drift conditions for subgeometric rates of convergence, Ann. Appl. Probab. 14 (2004), no. 4, 1353-1377.
24. R. Douc, E. Moulines, and P. Soulier, Computable convergence rates for subgeometrically ergodic Markov chains, Bernoulli 13 (2007), no. 3, 831-848.
25. D. J. Daley, Tight bounds for the renewal function of a random walk, Ann. Probab. 8 (1980), no. 3, 615-621.
26. R. Douc, G. Fort, and A. Guillin, Subgeometric rates of convergence of f-ergodic strong Markov processes, Stoch. Process. Appl. 119 (2009), no. 3, 897-923.
27. V. V. Golomozyĭ and M. V. Kartashov, On integrability of the coupling moment for time-inhomogeneous Markov chains, Teor. Imovir. Matem. Statist. 89 (2014), 1-12; English transl. in Theor. Probability and Math. Statist. 89 (2014).
28. V. V. Golomozyĭ, Stability of non-homogeneous Markov chains, Visnyk Kyiv Univ., Ser. Fiz. Mat. Nauk 4 (2009), 10-15. (Ukrainian)
29. V. V. Golomozyĭ, A subgeometric estimate of the stability for time-homogeneous Markov chains, Teor. Imovir. Matem. Statist. 81 (2010), 31-46; English transl. in Theor. Probability and Math. Statist. 81 (2010), 35-50.
30. M. V. Kartashov, Boundedness, limits, and stability of solutions of a perturbation of a nonhomogeneous renewal equation on a semiaxis, Teor. Imovir. Matem. Statist. 81 (2009), 65-75; English transl. in Theor. Probability and Math. Statist. 81 (2010), 71-83.
31. M. V. Kartashov and V. V. Golomozyĭ, The mean coupling time for independent discrete renewal processes, Teor. Imovir. Matem. Statist. 84 (2011), 78-85; English transl. in Theor. Probability and Math. Statist. 84 (2012), 79-86.
32. M. V. Kartashov and V. V. Golomozyĭ, Maximal coupling procedure and stability of discrete Markov chains. I, Teor. Imovir. Matem. Statist. 86 (2012), 81-92; English transl. in Theor. Probability and Math. Statist. 86 (2013), 93-104.
33. M. V. Kartashov and V. V. Golomozyĭ, Maximal coupling procedure and stability of discrete Markov chains. II, Teor. Imovir. Matem. Statist. 87 (2012), 58-70; English transl. in Theor. Probability and Math. Statist. 87 (2013), 65-78.