A Journal "Theory of Probability and Mathematical Statistics"
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



Asymptotic behavior of the martingale type integral functionals for unstable solutions to stochastic differential equations

G. L. Kulinich, S. V. Kushnirenko, Yu. S. Mishura

Download PDF

Abstract: We consider functionals of the type ∫_{0}^{t}g(ξ(s))dW(s), t≥0. Here g is a real valued and locally square integrable function, ξ is a unique strong solution of the Itô stochastic differential equation dξ(t)=a(ξ(t))dt+dW(t), a is a measurable real valued bounded function such that |xa(x)|≤C. The behavior of these functionals is studied as t→∞. The appropriate normalizing factor and the explicit form of the limit random variable are established.

Keywords: Itô stochastic differential equations, unstable solutions, asymptotic behavior of martingale type functionals

Bibliography:
1. A. Yu. Veretennikov, On the strong solutions of stochastic differential equations, Teor. Veroyatnost. Primenen. XXIV (1979), no. 2, 348-360; English transl. in Theory Probab. Appl. 24 (1979), no. 2, 354-366.
2. G. L. Kulinich and E. P. Kas'kun, On the asymptotic behavior of solutions of a class of one-dimensional Itô stochastic differential equations, Teor. Imovir. Mat. Stat. 56 (1997), 96-104; English transl. in Theory Probab. Math. Statist. 56 (1998), 97-105.
3. T. Shiga and S. Watanabe, Bessel diffusions as a one-parameter family of diffusion processes, Z. Wahrscheinlichkeitstheory und verw. Geb. 27 (1973), no. 1, 37-46.
4. G. L. Kulinich, S. V. Kushnirenko, and Y. S. Mishura, Asymptotic behavior of the integral functionals for unstable solutions of one-dimensional Itô stochastic differential equations, Theory Probab. Math. Statist. 89 (2013), 93-105.
5. G. L. Kulinich, Limit distributions for integral type functionals of non-stable diffusion processes, Teor. Imovir. Mat. Stat. 11 (1974), 81-85; English transl. in Theory Probab. Math. Statist. 11 (1975), 82-86.
6. G. L. Kulinich, Limit theorems for one-dimensional stochastic differential equations under nonregular dependence of coefficients on a parameter, Teor. Imovir. Mat. Stat. 15 (1976), 99-114; English transl. in Theory Probab. Math. Statist. 15 (1978), 101-116.
7. G. L. Kulinich, On necessary and sufficient conditions for convergence of homogeneous additive functionals of diffusion processes, Proceedings of the Second Ukrainian-Hungarian Conference: New Trends in Probability and Mathematical Statistics (M. Aráto and M. Yadrenko, eds.), vol. 2, TViMS'', Kyiv, 1995, pp. 381-390.
8. N. I. Portenko, Some limit theorems for additive functionals of processes with independent increments, Teor. Imovir. Mat. Stat. 4 (1971), 130-136; English transl. in Theory Probab. Math. Statist. 4 (1972), 121-126.
9. J. Jacod and A. N. Shiryaev, Limit Theorems for Stochastic Processes, ''Fizmatlit'', Moscow, 1994; English transl., Springer-Verlag, Berlin, 1987.
10. G. L. Kulinich, On the limit behavior of the distribution of the solution of a stochastic diffusion equation, Teor. Veroyatnost. Primenen. XII (1967), no. 3, 348-360; English transl. in Theory Probab. Appl. (1967) 12, no. 3, 497-499.
11. A. V. Skorokhod and N. P. Slobodenyuk, Limit Theorems for Random Walks, ''Naukova Dumka'', Kiev, 1970. (Russian)
12. I. I. Gikhman and A. V. Skorokhod, Stochastic Differential Equations and their Applications, ''Naukova Dumka'', Kiev, 1982. (Russian)
13. I. I. Gikhman and A. V. Skorokhod, Stochastic Differential Equations, ''Naukova Dumka'', Kiev, 1968; English transl., Springer-Verlag, Berlin, 1972.
14. A. V. Skorokhod, Studies in the Theory of Random Processes, Kiev University Press, Kiev, 1961; English transl., Addison-Wesley, Reading, 1965.
15. N. V. Krylov, Controlled Diffusion Processes, ''Nauka'', Moscow, 1977; English transl., Springer, Berlin, 1980.
16. I. I. Gikhman and A. V. Skorokhod, Introduction to the Theory of Stochastic Processes, ''Nauka'', Moscow, 1965; English transl., W. B. Saunders, Philadelphia, PA, 1969.
17. M. Loève, Probability Theory, 4th ed., Springer-Verlag, New York, 1977.