Theory of Probability and Mathematical Statistics
Asymptotic behavior of the martingale type integral functionals for unstable solutions to stochastic differential equations
G. L. Kulinich, S. V. Kushnirenko, Yu. S. Mishura
Download PDF
Abstract: We consider functionals of the type ∫_{0}^{t}g(ξ(s))dW(s), t≥0. Here g is a real valued and locally square integrable function, ξ is a unique strong solution of the Itô stochastic differential equation dξ(t)=a(ξ(t))dt+dW(t), a is a measurable real valued bounded function such that |xa(x)|≤C. The behavior of these functionals is studied as t→∞. The appropriate normalizing factor and the explicit form of the limit random variable are established.
Keywords: Itô stochastic differential equations, unstable solutions, asymptotic behavior of martingale type functionals
Bibliography: 1. A. Yu. Veretennikov, On the strong solutions of stochastic differential equations, Teor. Veroyatnost. Primenen. XXIV (1979), no. 2, 348-360; English transl. in Theory Probab. Appl. 24 (1979), no. 2, 354-366.
2. G. L. Kulinich and E. P. Kas'kun, On the asymptotic behavior of solutions of a class of one-dimensional Itô stochastic differential equations, Teor. Imovir. Mat. Stat. 56 (1997), 96-104; English transl. in Theory Probab. Math. Statist. 56 (1998), 97-105.
3. T. Shiga and S. Watanabe, Bessel diffusions as a one-parameter family of diffusion processes, Z. Wahrscheinlichkeitstheory und verw. Geb. 27 (1973), no. 1, 37-46.
4. G. L. Kulinich, S. V. Kushnirenko, and Y. S. Mishura, Asymptotic behavior of the integral functionals for unstable solutions of one-dimensional Itô stochastic differential equations, Theory Probab. Math. Statist. 89 (2013), 93-105.
5. G. L. Kulinich, Limit distributions for integral type functionals of non-stable diffusion processes, Teor. Imovir. Mat. Stat. 11 (1974), 81-85; English transl. in Theory Probab. Math. Statist. 11 (1975), 82-86.
6. G. L. Kulinich, Limit theorems for one-dimensional stochastic differential equations under nonregular dependence of coefficients on a parameter, Teor. Imovir. Mat. Stat. 15 (1976), 99-114; English transl. in Theory Probab. Math. Statist. 15 (1978), 101-116.
7. G. L. Kulinich, On necessary and sufficient conditions for convergence of homogeneous additive functionals of diffusion processes, Proceedings of the Second Ukrainian-Hungarian Conference: New Trends in Probability and Mathematical Statistics (M. Aráto and M. Yadrenko, eds.), vol. 2, TViMS'', Kyiv, 1995, pp. 381-390.
8. N. I. Portenko, Some limit theorems for additive functionals of processes with independent increments, Teor. Imovir. Mat. Stat. 4 (1971), 130-136; English transl. in Theory Probab. Math. Statist. 4 (1972), 121-126.
9. J. Jacod and A. N. Shiryaev, Limit Theorems for Stochastic Processes, ''Fizmatlit'', Moscow, 1994; English transl., Springer-Verlag, Berlin, 1987.
10. G. L. Kulinich, On the limit behavior of the distribution of the solution of a stochastic diffusion equation, Teor. Veroyatnost. Primenen. XII (1967), no. 3, 348-360; English transl. in Theory Probab. Appl. (1967) 12, no. 3, 497-499.
11. A. V. Skorokhod and N. P. Slobodenyuk, Limit Theorems for Random Walks, ''Naukova Dumka'', Kiev, 1970. (Russian)
12. I. I. Gikhman and A. V. Skorokhod, Stochastic Differential Equations and their Applications, ''Naukova Dumka'', Kiev, 1982. (Russian)
13. I. I. Gikhman and A. V. Skorokhod, Stochastic Differential Equations, ''Naukova Dumka'', Kiev, 1968; English transl., Springer-Verlag, Berlin, 1972.
14. A. V. Skorokhod, Studies in the Theory of Random Processes, Kiev University Press, Kiev, 1961; English transl., Addison-Wesley, Reading, 1965.
15. N. V. Krylov, Controlled Diffusion Processes, ''Nauka'', Moscow, 1977; English transl., Springer, Berlin, 1980.
16. I. I. Gikhman and A. V. Skorokhod, Introduction to the Theory of Stochastic Processes, ''Nauka'', Moscow, 1965; English transl., W. B. Saunders, Philadelphia, PA, 1969.
17. M. Loève, Probability Theory, 4th ed., Springer-Verlag, New York, 1977.