A Journal "Theory of Probability and Mathematical Statistics"
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



Minimax interpolation of harmonizable sequences

M. P. Moklyachuk, V. I. Ostapenko

Download PDF

Abstract: The problem of estimation of the functional A_Nξ=∑_{j=0}^{N}a_jξ_j that depends on unknown values ξ_j, j=0,1,...,N, of a harmonizable symmetric α-stable random sequence ξ_n, n∈Z, by using observations of the sequence at the points n∈Z\{0,1,...,N} is studied under one of the conditions, either a condition of spectral certainty or a condition of spectral uncertainty. Expressions for calculating the value of the error and spectral characteristic of the optimal linear estimator of the functional are obtained under the condition of spectral certainty in the case where the spectral density of a sequence is known. In the case of spectral uncertainty where the spectral density of a sequence is not known but a class of admissible spectral densities is given, we propose relations to determine the least favorable spectral density and the minimax spectral characteristic.

Keywords: Harmonizable sequence, robust estimator, least favorable spectral density, minimax spectral characteristic

Bibliography:
1. S. Cambanis, Complex symmetric stable variables and processes, Contributions to Statistics, North-Holland, Amsterdam, 1983, pp. 63-79.
2. S. Cambanis and R. Soltani, Prediction of stable processes: spectral and moving average representations, Z. Wahrsch. Verw. Gebiete 66 (1984), 593-612.
3. I. I. Dubovets'ka, O. Yu. Masyutka, and M. P. Moklyachuk, Interpolation of periodically correlated stochastic sequences, Teor. Ĭmovir. Mat. Stat. 84 (2011), 43-56; English transl in. Theory Probab. Math. Stat. 84 (2012), 43-56.
4. I. I. Dubovets'ka and M. P. Moklyachuk, On minimax estimation problems for periodically correlated stochastic processes, Contemporary Math. Statist. 2 (2014), no. 1, 1-24.
5. J. Franke, Minimax robust prediction of discrete time series, Z. Wahrsch. Verw. Gebiete 68 (1985), 337-364.
6. I. I. Golichenko and M. P. Moklyachuk, Estimators for Functionals of Periodically Correlated Stochastic Processes, ''Interservis'', Kyiv, 2014. (Ukrainian)
7. U. Grenander, A prediction problem in game theory, Ark. Mat. 3 (1957), 371-379.
8. E. J. Hannan, Multiple time series, John Wiley & Sons, Inc., New York-London-Sydney, 1970.
9. Y. Hosoya, Harmonizable stable processes, Z. Wahrsch. Verw. Gebiete 60 (1982), 517-533.
10. A. D. Ioffe and V. M. Tihomirov, Theory of extremal problems, Studies in Mathematics and its Applications, vol. 6, North-Holland Publishing Company, Amsterdam-New York-Oxford, 1979.
11. S. A. Kassam and H. V. Poor, Robust techniques for signal processing: A survey, Proc. IEEE 73 (1985), 433-481.
12. A. N. Kolmogorov, Selected works by A. N. Kolmogorov. Vol. II: Probability theory and mathematical statistics (A. N. Shiryayev, ed.), Mathematics and Its Applications. Soviet Series, vol. 26, Kluwer Academic Publishers, Dordrecht, 1992.
13. M. G. Kreĭn and A. A. Nudel'man, The Markov moment problem and extremal problems, ''Nauka'', Moscow, 1973; English transl., American Mathematical Society, Providence, R.I., 1977.
14. M. M. Luz and M. P. Moklyachuk, Interpolation for functionals of random sequences with stationary increments constructed from observations with the noise, Appl. Stat. Actuar. Finance Math. 2 (2012), 131-148. (Ukrainian)
15. M. M. Luz and M. P. Moklyachuk, Interpolation of functionals of stochastic sequences with stationary increments, Teor. Ĭmovir. Mat. Stat. 87 (2012), 105-119; English transl. in Theory Probab. Math. Stat. 87 (2013), 117-133.
16. M. M. Luz and M. P. Moklyachuk, Minimax interpolation problem for random processes with stationary increments, Stat. Optim. Inf. Comput. 3 (2015), 30-41.
17. M. P. Moklyachuk, Robust procedures in time series analysis, Theory Stoch. Process. 6 (2000), no. 3-4, 127-147.
18. M. P. Moklyachuk, Game theory and convex optimization methods in robust estimation problems, Theory Stoch. Process. 7 (2001), no. 1-2, 253-264.
19. M. P. Moklyachuk, Robust Estimators for Functionals of Stochastic Processes, ''Kyiv University'', Kyiv, 2008. (Ukrainian)
20. M. P. Moklyachuk, Nonsmooth Analysis and Optimization, ''Kyiv University'', Kyiv, 2008. (Ukrainian)
21. M. P. Moklyachuk and I. I. Dubovets'ka, Minimax interpolation of periodically correlated processes, Nauk. Visnyk Uzhgorod Univ. Ser. Mat. Inform. 23 (2012), no. 2, 51-62. (Ukrainian)
22. M. P. Moklyachuk and O. Yu. Masyutka, Interpolation of multidimensional stationary sequences, Teor. Ĭmovir. Mat. Stat. 73 (2005), 112-119; English transl in. Theory Probab. Math. Stat. 73 (2006), 125-133.
23. M. P. Moklyachuk and O. Yu. Masyutka, Robust estimation problems for stochastic processes, Theory Stoch. Process. 12 (2006), no. 3-4, 88-113.
24. M. Moklyachuk and O. Masyutka, Minimax-Robust Estimation Technique for Stationary Stochastic Processes, LAP LAMBERT Academic Publishing, 2012.
25. M. Pourahmadi, On minimality and interpolation of harmonizable stable processes, SIAM J. Appl. Math. 44 (1984), no. 5, 1023-1030.
26. I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer, Berlin-Heidelberg, 1970.
27. K. S. Vastola and H. V. Poor, An analysis of the effects of spectral uncertainty on Wiener filtering, Automatica 28 (1983), 289-293.
28. A. Weron, Harmonizable stable processes on groups: spectral, ergodic and interpolation properties, Z. Wahrsch. Verw. Gebiete 68 (1985), no. 4, 473-491.
29. N. Wiener, Extrapolation, Interpolation and Smoothing of Stationary Time Series. With Engineering Applications, M. I. T. Press, Massachusetts Institute of Technology, Cambridge, Mass., 1966.
30. A. M. Yaglom, Correlation Theory of Stationary and Related Random Functions, vol. 1: Basic Results, Springer Series in Statistics, Springer-Verlag, New York, 1987.
31. A. M. Yaglom, Correlation Theory of Stationary and Related Random Functions, vol. 2: Supplementary Notes and References, Springer Series in Statistics, Springer-Verlag, New York, 1987.