A Journal "Theory of Probability and Mathematical Statistics"
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



Singular asymptotic normality of an estimator in the conic section fitting problem. I

S. V. Shklyar

Download PDF

Abstract: The conic section fitting problem is considered. True points are assumed to lie on a conic section. The points are observed with additive errors, which are independent and have bivariate normal distribution N(0,σ^2I) with unknown σ^2. We study asymptotic properties of the estimator of conic section parameters introduced by Kukush, Markovsky, and Van Huffel in Computational Statistics and Data Analysis 47 (2004), 123-147. Sufficient conditions for singular asymptotic normality of the estimator are provided. The asymptotic covariance matrix is singular and has defect 1 because the unit sphere in Euclidean space is taken as a parameter space.

Keywords: Errors in variables, asymptotic normality, estimation of parameters of a conic section

Bibliography:
1. R. J. Carroll, D. Ruppert, L. A. Stefanski, and C. Crainiceanu, Measurement Error in Nonlinear Models: A Modern Perspective, second edition, Chapman & Hall/CRC, Boca Raton, FL, 2006.
2. A. Kukush, I. Markovsky, and S. Van Huffel, Consistent estimation in an implicit quadratic error model, Comput. Statist. Data Anal. 47 (2004), no. 1, 123-147.
3. A. Kukush and H. Schneeweiss, Comparing different estimators in a nonlinear measurement error model. I, Math. Methods Statist. 14 (2005), no. 1, 53-79.
4. I. Markovsky, A. Kukush, and S. Van Huffel, Consistent least squares fitting of ellipsoids, Numer. Math. 98 (2004), no. 1, 177-194.
5. J. Pfanzagl, On the measurability and consistency of minimum contrast estimates, Metrika 14 (1969), 249-272.
6. S. Shklyar, A. Kukush, I. Markovsky, and S. Van Huffel, On the conic section fitting problem, J. Multivariate Anal. 98 (2007), no. 3, 588-624.
7. G. W. Stewart and J. Sun, Matrix Perturbation Theory, Academic Press, Boston, 1990.
8. P. K. Suetin, Orthogonal Polynomials in Two Variables, ''Nauka'', Moscow, 1988; English transl. Gordon and Breach Science Publishers, Amsterdam, 1999.