Theory of Probability and Mathematical Statistics
A probabilistic approach to studies of DP-transformations and faithfullness of covering systems to evaluate the Hausdorff-Besicovitch dimension
M. H. Ibragim, G. M. Torbin
Download PDF
Abstract: This paper is devoted to the development of a probabilistic approach to transformations preserving the Hausdorff-Besicovitch dimension. New relations between fractal faithfulness of fine covering systems and DP-properties of related probability distribution functions are found. Necessary and sufficient conditions for the probability distribution functions of random variables with independent $ Q^*$-symbols to be DP-functions are obtained.
Keywords: Singularly continuous probability distributions, Q∗-representations, DP-transformations, faithful covering systems, Hausdorff-Besicovitch dimension of sets, Hausdorff dimension of probability measures
Bibliography: 1. S. Albeverio, Yu. Kondratiev, R. Nikiforov, and G. Torbin, On fractal properties of non-normal numbers with respect to Rényi f-expansions generated by piecewise linear functions, Bull. Sci. Math. 138 (2014), no. 3, 440-455.
2. S. Albeverio and G. Torbin, Fractal properties of singular continuous probability distributions with independent $ Q^*$-digits, Bull. Sci. Math. 129 (2005), no. 4, 356-367.
3. S. Albeverio, V. Koshmanenko, M. Pratsiovytyi, and G. Torbin, On fine structure of singularly continuous probability measures and random variables with independent Q-symbols, Methods Funct. Anal. Topology 17 (2011), no. 2, 97-111.
4. S. Albeverio, M. Pratsiovytyi, and G. Torbin, Fractal probability distributions and transformations preserving the Hausdorff-Besicovitch dimension, Ergodic Theory Dynamic. Systems 24 (2004), no. 1, 1-16.
5. S. Albeverio, M. Pratsiovytyi, and G. Torbin, Transformations preserving the Hausddorff-Besicovitch dimension, Central European J. Math. 6 (2008), no. 1, 15-24.
6. P. Billingsley, Hausdorff dimension in probability theory. II, Ill. J. Math. 5 (1961), 291-198.
7. C. Cutler, A note on equivalent interval covering systems for Hausdorff dimension on R, Internat. J. Math. Math. Sci. 2 (1988), no. 4, 643-650.
8. K. J. Falconer, Fractal Geometry: Mathematical Foundations and Applications, John Wiley and Sons, New York, 2003.
9. J. R. Kinney and T. S. Pitcher, On dimension of some sets defined in terms of f-expansions, Z. Wahrsch. Verw. Geb. 4 (1966), 293-315.
10. S. Kullback and R. A. Leibler, On information and sufficiency, Ann. Math. Statist. 22 (1951), 79-86.
11. R. O. Nikiforov and G. M. Torbin, Fractal properties of random variables with independent Q∞-symbols, Teor. Ĭmovir. Mat. Stat. 86 (2012), 150-162; English transl. in Theor. Probability and Math. Statist. 86 (2013), 169-182.
12. N. V. Pratsevytyĭ and G. M. Torbin, Analytic (symbol) representation of continuous transformations of R^1 that preserve the Hausdorff-Besicovitch dimension, Nauk. Zap. Dragomanov Univ. Fiz. Mat. Nauky 4 (2003), 207-215. (Ukrainian)
13. A. N. Shiryaev, Probability, ''Nauka'', Moscow, 1989; English transl., Springer-Verlag, New York, 1996.
14. G. Torbin, Probability distributions with independent Q-symbols and transformations preserving the Hausdorff dimension, Theory Stoch. Process. 13 (2007), no. 29, 281-293.
15. G. M. Torbin, Multifractal analysis of singularly continuous probability measures, Ukr. Matem. Zh. 57 (2005), no. 5, 837-857; English transl. in Ukrain. Math. J. 57 (2005), no. 5, 837-857.
16. A. F. Turbin and N. V. Pratsevytyĭ, Fractal sets, functions, distributions, ''Naukova dumka'', Kiev, 1992. (Russian)