Theory of Probability and Mathematical Statistics
Limit behavior of functionals of solutions of diffusion type equations
G. L. Kulinich, S. V. Kushnirenko, Yu. S. Mishura
Download PDF
Abstract: The asymptotic behavior as T→∞ of the functionals I(tT) with an appropriate normalizing factor is studied, where I(t)=F(ξ(t))+∫_0^tg(ξ(s))dW(s), t≥0, F is a continuous function, g is a locally square integrable function, ξ is an unstable solution of the Itô stochastic differential equation dξ(t)=a(ξ(t))dt+dW(t), and a is a measurable and bounded function. We find the normalizing factor for the weak convergence of stochastic processes I(tT), t≥0, for certain classes of these equations. The explicit form of the limit processes is established.
Keywords: Diffusion type processes, limit behavior of functionals, unstable solutions of stochastic differential equations
Bibliography: 1. A. Yu. Veretennikov, On the strong solutions of stochastic differential equations, Teor. Veroyatnost. i Primenen. XXIV (1979), no. 2, 348-360; English transl. in Theory Probab. Appl. 24 (1980), no. 2, 354-366.
2. I. I. Gikhman and A. V. Skorokhod, Stochastic Differential Equations, ''Naukova Dumka'', Kiev, 1968; English transl., Springer-Verlag, Berlin, 1972.
3. G. L. Kulinich, Asymptotic Analysis of Unstable Solutions of One Dimensional Stochastic Differential Equations: a Textbook, ''Kyiv University'', Kyiv, 2003. (Ukrainian)
4. G. L. Kulinich, On the asymptotic behavior of the distributions of functionals of the type ∫_0^tg(ξ(s))ds for diffusion processes, Teor. Veroyatnost. Mat. Stat. 8 (1973), 99-105; English transl. in Theor. Probab. Math. Statist. 8 (1974), 95-101.
5. G. L. Kulinich, Limit distributions for functionals of integral type of unstable diffusion processes, Teor. Veroyatnost. Mat. Stat. 11 (1974), 81-85; English transl. in Theor. Probab. Math. Statist. 11 (1975), 82-86.
6. G. L. Kulinich, On the asymptotic behavior of the solution of one dimensional stochastic diffusion equation, Stochastic differential systems (Proc. IFIP-WG 7/1 Working Conf., Vilnius, 1978), Lecture Notes in Control and Information Sci., vol. 25, Springer-Verlag, Berlin-New York, 1980, pp. 334-343.
7. G. L. Kulinich, On necessary and sufficient conditions for convergence of homogeneous additive functionals of diffusion processes, Proceedings of the Second Ukrainian-Hungarian Conference: New Trends in Probability and Mathematical Statistics (M. Arató and M. Yadrenko, eds.), vol. 2, TViMS'', Kyiv, 1995, pp. 381-390.
8. G. L. Kulinich, S. V. Kushnirenko, and Yu. S. Mishura, Asymptotic behavior of the integral functionals for unstable solutions of one-dimensional Itô stochastic differential equations, Teor. Ĭmovir. Mat. Stat. 89 (2013), 93-105; English transl. in Theory Probab. Math. Statist. 89 (2014), 101-114.
9. G. L. Kulinich, S. V. Kushnirenko, and Yu. S. Mishura, Asymptotic behavior of the martingale type integral functionals for unstable solutions to stochastic differential equations, Teor. Ĭmovir. Mat. Stat. 90 (2014), 102-112; English transl. in Theory Probab. Math. Statist. 90 (2014), 115-126.
10. A. V. Skorohod and N. P. Slobodenyuk, Limit Theorems for Random Walks, ''Naukova Dumka'', Kiev, 1970. (Russian)
11. A. M. Kulik, Local times of stochastic processes, Mathematics today (2008), 31-65. (Russian)
12. A. V. Skorokhod, Studies in the Theory of Random Processes, Kiev University Publishing House, Kiev, 1961; English transl., Scripta Technica, Inc, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965.
13. N. V. Krylov, Controlled Diffusion Processes, ''Nauka'', Moscow, 1977; English transl., Stochastic Modelling and Applied Probability, vol. 14, Springer-Verlag, Berlin, 2009; Translated from the 1977 Russian original by A. B. Aries; Reprint of the 1980 edition.
14. I. I. Gikhman and A. V. Skorokhod, Introduction to the Theory of Random Processes, ''Nauka'', Moscow, 1965; English transl., Scripta Technica, Inc, W. B. Saunders Co., Philadelphia, Pa.-London-Toronto, Ont., 1969.