A Journal "Theory of Probability and Mathematical Statistics"
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



Limit behavior of functionals of solutions of diffusion type equations

G. L. Kulinich, S. V. Kushnirenko, Yu. S. Mishura

Download PDF

Abstract: The asymptotic behavior as T→∞ of the functionals I(tT) with an appropriate normalizing factor is studied, where I(t)=F(ξ(t))+∫_0^tg(ξ(s))dW(s), t≥0, F is a continuous function, g is a locally square integrable function, ξ is an unstable solution of the Itô stochastic differential equation dξ(t)=a(ξ(t))dt+dW(t), and a is a measurable and bounded function. We find the normalizing factor for the weak convergence of stochastic processes I(tT), t≥0, for certain classes of these equations. The explicit form of the limit processes is established.

Keywords: Diffusion type processes, limit behavior of functionals, unstable solutions of stochastic differential equations

Bibliography:
1. A. Yu. Veretennikov, On the strong solutions of stochastic differential equations, Teor. Veroyatnost. i Primenen. XXIV (1979), no. 2, 348-360; English transl. in Theory Probab. Appl. 24 (1980), no. 2, 354-366.
2. I. I. Gikhman and A. V. Skorokhod, Stochastic Differential Equations, ''Naukova Dumka'', Kiev, 1968; English transl., Springer-Verlag, Berlin, 1972.
3. G. L. Kulinich, Asymptotic Analysis of Unstable Solutions of One Dimensional Stochastic Differential Equations: a Textbook, ''Kyiv University'', Kyiv, 2003. (Ukrainian)
4. G. L. Kulinich, On the asymptotic behavior of the distributions of functionals of the type ∫_0^tg(ξ(s))ds for diffusion processes, Teor. Veroyatnost. Mat. Stat. 8 (1973), 99-105; English transl. in Theor. Probab. Math. Statist. 8 (1974), 95-101.
5. G. L. Kulinich, Limit distributions for functionals of integral type of unstable diffusion processes, Teor. Veroyatnost. Mat. Stat. 11 (1974), 81-85; English transl. in Theor. Probab. Math. Statist. 11 (1975), 82-86.
6. G. L. Kulinich, On the asymptotic behavior of the solution of one dimensional stochastic diffusion equation, Stochastic differential systems (Proc. IFIP-WG 7/1 Working Conf., Vilnius, 1978), Lecture Notes in Control and Information Sci., vol. 25, Springer-Verlag, Berlin-New York, 1980, pp. 334-343.
7. G. L. Kulinich, On necessary and sufficient conditions for convergence of homogeneous additive functionals of diffusion processes, Proceedings of the Second Ukrainian-Hungarian Conference: New Trends in Probability and Mathematical Statistics (M. Arató and M. Yadrenko, eds.), vol. 2, TViMS'', Kyiv, 1995, pp. 381-390.
8. G. L. Kulinich, S. V. Kushnirenko, and Yu. S. Mishura, Asymptotic behavior of the integral functionals for unstable solutions of one-dimensional Itô stochastic differential equations, Teor. Ĭmovir. Mat. Stat. 89 (2013), 93-105; English transl. in Theory Probab. Math. Statist. 89 (2014), 101-114.
9. G. L. Kulinich, S. V. Kushnirenko, and Yu. S. Mishura, Asymptotic behavior of the martingale type integral functionals for unstable solutions to stochastic differential equations, Teor. Ĭmovir. Mat. Stat. 90 (2014), 102-112; English transl. in Theory Probab. Math. Statist. 90 (2014), 115-126.
10. A. V. Skorohod and N. P. Slobodenyuk, Limit Theorems for Random Walks, ''Naukova Dumka'', Kiev, 1970. (Russian)
11. A. M. Kulik, Local times of stochastic processes, Mathematics today (2008), 31-65. (Russian)
12. A. V. Skorokhod, Studies in the Theory of Random Processes, Kiev University Publishing House, Kiev, 1961; English transl., Scripta Technica, Inc, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965.
13. N. V. Krylov, Controlled Diffusion Processes, ''Nauka'', Moscow, 1977; English transl., Stochastic Modelling and Applied Probability, vol. 14, Springer-Verlag, Berlin, 2009; Translated from the 1977 Russian original by A. B. Aries; Reprint of the 1980 edition.
14. I. I. Gikhman and A. V. Skorokhod, Introduction to the Theory of Random Processes, ''Nauka'', Moscow, 1965; English transl., Scripta Technica, Inc, W. B. Saunders Co., Philadelphia, Pa.-London-Toronto, Ont., 1969.