A Journal "Theory of Probability and Mathematical Statistics"
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



Adaptive test on means homogeneity by observations from a mixture

R. E. Maĭboroda, O. V. Sugakova

Download PDF

Abstract: We consider the problem of testing the homogeneity of two components of a mixture with varying mixing probabilities and construct an adaptive test that minimizes the asymptotic probability of error of the second kind for local alternatives.

Keywords: Adaptive algorithms, local alternatives, models of mixtures with varying concentrations, test for homogeneity of two means

Bibliography:
1. A. A. Borovkov, Probability Theory, ''Nauka'', Moscow, 1986; English transl., Gordon and Breach Science Publishers, Amsterdam, 1998.
2. O. O. Kubaĭchuk and R. E. Maĭboroda, Improved estimates for moments based on observations from a mixture, Teor. Ĭmovir. Mat. Stat. 70 (2004), 74-81; English transl. in Theory Probab. Math. Statist. 70 (2005), 83-92.
3. O. V. Doronin, Adaptive estimation in a semiparametric mixture model, Teor. Ĭmovir. Mat. Stat. 91 (2014), 26-37; English transl. in Theory Probab. Math. Statist. 91 (2015), 29-41.
4. R. E. Maĭboroda and O. V. Sugakova, Estimation and Classification by Observations of a Mixture, ''Kyiv University'', Kyiv, 2008. (Ukrainian)
5. A. Yu. Ryzhov, A test of the hypothesis about the homogeneity of components of a mixture with varying concentrations by using censored data, Teor. Ĭmovir. Mat. Stat. 72 (2005), 129-139; English transl. in Theory Probab. Math. Statist. 72 (2006) 145-155.
6. A. Shcherbina, Estimation of the mean value in a model of mixtures with varying concentrations, Teor. Ĭmovir. Mat. Stat. 84 (2011), 142-154; English transl. in Theory Probab. Math. Statist 84 (2012) 151-164.
7. F. Autin and Ch. Pouet, Test on the components of mixture densities, Stat. Risk Model. 28 (2011), no. 4, 389-410.
8. A. Doronin and R. Maiboroda, Testing hypotheses on moments by observations from a mixture with varying concentrations, Mod. Stoch. Theory Appl. 1 (2014), no. 2, 195-209.
9. G. J. McLachlan and D. Peel, Finite Mixture Models, Wiley-Interscience, New York, 2000.
10. R. Maiboroda and O. Sugakova, Statistics of mixtures with varying concentrations with application to DNA microarray data analysis, J. Nonparametr. Stat. 24 (2012), no. 1, 201-215.
11. D. M. Titterington, A. F. M. Smith, and U. E. Makov, Statistical Analysis of Finite Mixture Distribution, Wiley, New York, 1985.