Theory of Probability and Mathematical Statistics
Estimating multivariate extremal dependence: a new proposal
M. Ferreira
Download PDF
Abstract: Multivariate extreme values require the use of extreme-value copulas, as they appear in the limit of componentwise maxima. These can be characterized by the so-called Pickands dependence function. A new multivariate nonparametric estimator will be presented, along with convergence properties. Based on simulations, we will analyze its performance and compare with well-known estimators from the literature.
Keywords: Extreme value copula, multivariate Pickands dependence function, nonparametric estimation
Bibliography: 1. B. Abdous and K. Ghoudi, Non-parametric estimators of multivariate extreme dependence functions, J. Nonparametr. Statist. 17 (2005), 915-935.
2. J. Beirlant, Y. Goegebeur, J. Segers, and J. Teugels, Statistics of Extremes: Theory and Applications, Wiley, Chichester, 2004.
3. A. Bücher, H. Dette, and S. Volgushev, New estimators of the Pickands dependence function and a test for extreme-value dependence, Ann. Statist. 39 (2011), no. 4, 1963-2006.
4. P. Capéraà, A.-L. Fougères, and C. Genest, A nonparametric estimation procedure for bivariate extreme value copulas, Biometrika 84 (1997), 567-577.
5. P. Deheuvels, On the limiting behavior of the Pickands estimator for bivariate extreme value distributions, Statist. Probab. Lett. 12 (1991), 429-439.
6. H. Ferreira and M. Ferreira, On extremal dependence of block vectors, Kybernetika 48 (2012), no. 5, 988-1006.
7. M. Ferreira, A new estimator for the Pickands dependence function (2015). (submitted)
8. A. Fils-Villetard, A. Guillou, and J. Segers, Projection estimators of Pickands dependence functions, Canad. J. Statist. 36 (2008), 369-382.
9. C. Genest and J. Segers, Rank-based inference for bivariate extreme-value copulas, Ann. Statist. 37 (2009), no. 5B, 2990-3022.
10. G. Gudendorf and J. Segers, Nonparametric estimation of an extreme-value copula in arbitrary dimensions, J. Multivariate Anal. 102 (2011), no. 1, 37-47.
11. G. Gudendorf and J. Segers, Nonparametric estimation of multivariate extreme-value copulas, J. Statist. Plann. Inference 142 (2012), 3073-3085.
12. P. Hall and N. Tajvidi, Distribution and dependence-function estimation for bivariate extreme-value distributions, Bernoulli 6 (2000), 835-844.
13. J. Pickands, Multivariate extreme value distributions (with a discussion), Proceedings of the 43rd Session of the International Statistical Institute, Bull. Inst. Internat. Statist., vol. 49, 1981, pp. 859-878, 894-902.
14. J. Segers, Nonparametric inference for bivariate extreme-value copulas, Topics in Extreme Values (M. Ahsanullah and S. N. U. A. Kirmani, eds.), Nova Science Publishers, New York, 2007, 181-203.
15. J. Segers, Asymptotics of empirical copula processes under non-restrictive smoothness assumptions, Bernoulli 18 (2012), no. 3, 764-782.
16. J. A. Tawn, Modelling multivariate extreme value distributions, Biometrika 77 (1990), no. 2, 245-253.
17. A. W. van der Vaart and J. A. Wellner, Weak Convergence and Empirical Processes, Springer, New York, 1996.
18. D. Zhang, M. T. Wells, and L. Peng, Nonparametric estimation of the dependence function for a multivariate extreme value distribution, J. Multivariate Anal. 99 (2008), 577-588.