A Journal "Theory of Probability and Mathematical Statistics"
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



Estimating multivariate extremal dependence: a new proposal

M. Ferreira

Download PDF

Abstract: Multivariate extreme values require the use of extreme-value copulas, as they appear in the limit of componentwise maxima. These can be characterized by the so-called Pickands dependence function. A new multivariate nonparametric estimator will be presented, along with convergence properties. Based on simulations, we will analyze its performance and compare with well-known estimators from the literature.

Keywords: Extreme value copula, multivariate Pickands dependence function, nonparametric estimation

Bibliography:
1. B. Abdous and K. Ghoudi, Non-parametric estimators of multivariate extreme dependence functions, J. Nonparametr. Statist. 17 (2005), 915-935.
2. J. Beirlant, Y. Goegebeur, J. Segers, and J. Teugels, Statistics of Extremes: Theory and Applications, Wiley, Chichester, 2004.
3. A. Bücher, H. Dette, and S. Volgushev, New estimators of the Pickands dependence function and a test for extreme-value dependence, Ann. Statist. 39 (2011), no. 4, 1963-2006.
4. P. Capéraà, A.-L. Fougères, and C. Genest, A nonparametric estimation procedure for bivariate extreme value copulas, Biometrika 84 (1997), 567-577.
5. P. Deheuvels, On the limiting behavior of the Pickands estimator for bivariate extreme value distributions, Statist. Probab. Lett. 12 (1991), 429-439.
6. H. Ferreira and M. Ferreira, On extremal dependence of block vectors, Kybernetika 48 (2012), no. 5, 988-1006.
7. M. Ferreira, A new estimator for the Pickands dependence function (2015). (submitted)
8. A. Fils-Villetard, A. Guillou, and J. Segers, Projection estimators of Pickands dependence functions, Canad. J. Statist. 36 (2008), 369-382.
9. C. Genest and J. Segers, Rank-based inference for bivariate extreme-value copulas, Ann. Statist. 37 (2009), no. 5B, 2990-3022.
10. G. Gudendorf and J. Segers, Nonparametric estimation of an extreme-value copula in arbitrary dimensions, J. Multivariate Anal. 102 (2011), no. 1, 37-47.
11. G. Gudendorf and J. Segers, Nonparametric estimation of multivariate extreme-value copulas, J. Statist. Plann. Inference 142 (2012), 3073-3085.
12. P. Hall and N. Tajvidi, Distribution and dependence-function estimation for bivariate extreme-value distributions, Bernoulli 6 (2000), 835-844.
13. J. Pickands, Multivariate extreme value distributions (with a discussion), Proceedings of the 43rd Session of the International Statistical Institute, Bull. Inst. Internat. Statist., vol. 49, 1981, pp. 859-878, 894-902.
14. J. Segers, Nonparametric inference for bivariate extreme-value copulas, Topics in Extreme Values (M. Ahsanullah and S. N. U. A. Kirmani, eds.), Nova Science Publishers, New York, 2007, 181-203.
15. J. Segers, Asymptotics of empirical copula processes under non-restrictive smoothness assumptions, Bernoulli 18 (2012), no. 3, 764-782.
16. J. A. Tawn, Modelling multivariate extreme value distributions, Biometrika 77 (1990), no. 2, 245-253.
17. A. W. van der Vaart and J. A. Wellner, Weak Convergence and Empirical Processes, Springer, New York, 1996.
18. D. Zhang, M. T. Wells, and L. Peng, Nonparametric estimation of the dependence function for a multivariate extreme value distribution, J. Multivariate Anal. 99 (2008), 577-588.