Theory of Probability and Mathematical Statistics
Non-central limit theorems and convergence rates
Vo Anh, Andriy Olenko, V. Vaskovych
Download PDF
Abstract: This paper surveys some recent developments in non-central limit theorems for long-range dependent random processes and fields. We describe an increasing domain framework for asymptotic behavior of functionals of random processes and fields. Recent results on the rate of convergence to the Hermite-type distributions in non-central limit theorems are presented. The use of these results is demonstrated through an application to the case of Rosenblatt-type distributions.
Keywords: Non-central limit theorems, Rate of convergence, Random field, Long-range dependence, Rosenblatt-type distributions.
Bibliography: 1.V. Anh, N. Leonenko, A. Olenko. On the rate of convergence to Rosenblatt-type distribution {J. Math. Anal. Appl.} 425(1) (2015) 111--132.
2. V. Anh, N. Leonenko, A. Olenko, V.Vaskovych. On the rate of convergence in non-central limit theorems, submitted.
3. S. Bai, M.S. Taqqu, Multivariate limit theorems in the context of long-range dependence, J. Time Ser. Anal. 34(6) (2013) 717--743.
4. N.H. Bingham, C.M. Goldie, J.L. Teugels, Regular Variation,Cambridge University Press, Cambridge, 1987.
5. J.-C. Breton, On the rate of convergence in non-central asymptotics of the Hermite variations of fractional Brownian sheet, Probab. Math. Stat. 31(2) (2011) 301--311.
6. R.L. Dobrushin, Gaussian and their subordinated self-similar random generalized fields, Ann. Probab. 7(1) (1979.) 1--28.
7. R.L. Dobrushin, P. Major, Non-central limit theorems for nonlinear functionals of Gaussian fields, Z. Wahrsch. Verw. Gebiete.50(1) (1979) 27--52.
8. P.Doukhan, G.Oppenheim, M. S. Taqqu, (Eds.) Long-Range Dependence: Theory and Applications, (2003) Birkhauser, Boston.
9. L. Giraitis, Convergence of certain non-linear transformations of a Gaussian sequence to selfsimilar processes, Lithuanian Math. J. {23} (1983) 31--39.
10. L. Giraitis, D. Surgailis, CLT and other limit theorems for functionals of Gaussian processes, Z. Wahrsch. verw. Geb. 70 (1985) 191--212.
11. A.V. Ivanov, N.N. Leonenko, Statistical Analysis of Random Fields, Kluwer Academic Publishers, Dordrecht, 1989.
12. A.V. Ivanov, N. Leonenko, M. D. Ruiz-Medina, I. N. Savich, Limit theorems for weighted nonlinear transformations of Gaussian stationary processes with singular spectra, Ann. Probab. 41(2) (2013) 1088--1114.
13. J. Lamperti, Semi-stable stochastic processes. Trans. Amer. Math. Soc. 104, (1962) 62--78.
14. N.N. Leonenko, Sharpness of the normal approximation of functionals of strongly correlated Gaussian random fields, Math. Notes. 43(1-2) (1988) 161--171.
15. N.N. Leonenko. Limit Theorems for Random Fields with Singular Spectrum, Kluwer Academic Publishers, Dordrecht, 1999.
16. N.N. Leonenko, V. Anh, Rate of convergence to the Rosenblatt distribution for additive functionals of stochastic processes with long-range dependence, J. Appl. Math. Stochastic Anal. 14(1) (2001) 27--46.
17. N. Leonenko, A. Olenko, Sojourn measures of Student and Fisher-Snedecor random fields, Bernoulli 20(3) (2014) 1454--1483.
18. B. Mandelbrot, J.W. van Ness, Fractional Brownian motion, fractional noises and applications. SIAM Rev. 10, (1968) 422--437.
19. D. Marinucci, G. Peccati, Random Fields on the Sphere. Representation, Limit Theorems and Cosmological Applications. Cambridge University Press, 2011.
20. I. Nourdin, G. Peccati, Stein's method on Wiener chaos, Probab. Theory Related Fields. 145(1-2) (2009) 75--118.
21. A. Olenko, Limit theorems for weighted functionals of cyclical long-memory random fields. Stochastic Analysis and Applications. 31(2) (2013) 199--213.
22. G. Oppenheim, M.O. Haye, M.-C. Viano, Long memory with seasonal effects, Stat. Inference Stoch. Process. 3 (2000) 53--68.
23. M. Rosenblatt, Limit theorems for Fourier transforms of functional of Gaussian sequences, Z. Wahrsch. verw. Geb. 55 (1981) 123--132.
24. M.S. Taqqu, Weak convergence to fractional Brownian motion and to the Rosenblatt process, Z. Wahrsch. verw. Gebiete. 31 (1975) 287--302.
25. M.S. Taqqu, Convergence of integrated processes of arbitrary Hermite rank, Z. Wahrsch. Verw. Gebiete. 50 (1979) 53--83.
26. M.S. Veillette, M.S. Taqqu, Properties and numerical evaluation of the Rosenblatt distribution, Bernoulli 19(3) (2013) 982--1005.
27. M. I. Yadrenko, Spectral Theory of Random Fields, Optimization Software Inc., New York, 1983.