A Journal "Theory of Probability and Mathematical Statistics"
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



Non-central limit theorems and convergence rates

Vo Anh, Andriy Olenko, V. Vaskovych

Download PDF

Abstract: This paper surveys some recent developments in non-central limit theorems for long-range dependent random processes and fields. We describe an increasing domain framework for asymptotic behavior of functionals of random processes and fields. Recent results on the rate of convergence to the Hermite-type distributions in non-central limit theorems are presented. The use of these results is demonstrated through an application to the case of Rosenblatt-type distributions.

Keywords: Non-central limit theorems, Rate of convergence, Random field, Long-range dependence, Rosenblatt-type distributions.

Bibliography:
1.V. Anh, N. Leonenko, A. Olenko. On the rate of convergence to Rosenblatt-type distribution {J. Math. Anal. Appl.} 425(1) (2015) 111--132.
2. V. Anh, N. Leonenko, A. Olenko, V.Vaskovych. On the rate of convergence in non-central limit theorems, submitted.
3. S. Bai, M.S. Taqqu, Multivariate limit theorems in the context of long-range dependence, J. Time Ser. Anal. 34(6) (2013) 717--743.
4. N.H. Bingham, C.M. Goldie, J.L. Teugels, Regular Variation,Cambridge University Press, Cambridge, 1987.
5. J.-C. Breton, On the rate of convergence in non-central asymptotics of the Hermite variations of fractional Brownian sheet, Probab. Math. Stat. 31(2) (2011) 301--311.
6. R.L. Dobrushin, Gaussian and their subordinated self-similar random generalized fields, Ann. Probab. 7(1) (1979.) 1--28.
7. R.L. Dobrushin, P. Major, Non-central limit theorems for nonlinear functionals of Gaussian fields, Z. Wahrsch. Verw. Gebiete.50(1) (1979) 27--52.
8. P.Doukhan, G.Oppenheim, M. S. Taqqu, (Eds.) Long-Range Dependence: Theory and Applications, (2003) Birkhauser, Boston.
9. L. Giraitis, Convergence of certain non-linear transformations of a Gaussian sequence to selfsimilar processes, Lithuanian Math. J. {23} (1983) 31--39.
10. L. Giraitis, D. Surgailis, CLT and other limit theorems for functionals of Gaussian processes, Z. Wahrsch. verw. Geb. 70 (1985) 191--212.
11. A.V. Ivanov, N.N. Leonenko, Statistical Analysis of Random Fields, Kluwer Academic Publishers, Dordrecht, 1989.
12. A.V. Ivanov, N. Leonenko, M. D. Ruiz-Medina, I. N. Savich, Limit theorems for weighted nonlinear transformations of Gaussian stationary processes with singular spectra, Ann. Probab. 41(2) (2013) 1088--1114.
13. J. Lamperti, Semi-stable stochastic processes. Trans. Amer. Math. Soc. 104, (1962) 62--78.
14. N.N. Leonenko, Sharpness of the normal approximation of functionals of strongly correlated Gaussian random fields, Math. Notes. 43(1-2) (1988) 161--171.
15. N.N. Leonenko. Limit Theorems for Random Fields with Singular Spectrum, Kluwer Academic Publishers, Dordrecht, 1999.
16. N.N. Leonenko, V. Anh, Rate of convergence to the Rosenblatt distribution for additive functionals of stochastic processes with long-range dependence, J. Appl. Math. Stochastic Anal. 14(1) (2001) 27--46.
17. N. Leonenko, A. Olenko, Sojourn measures of Student and Fisher-Snedecor random fields, Bernoulli 20(3) (2014) 1454--1483.
18. B. Mandelbrot, J.W. van Ness, Fractional Brownian motion, fractional noises and applications. SIAM Rev. 10, (1968) 422--437.
19. D. Marinucci, G. Peccati, Random Fields on the Sphere. Representation, Limit Theorems and Cosmological Applications. Cambridge University Press, 2011.
20. I. Nourdin, G. Peccati, Stein's method on Wiener chaos, Probab. Theory Related Fields. 145(1-2) (2009) 75--118.
21. A. Olenko, Limit theorems for weighted functionals of cyclical long-memory random fields. Stochastic Analysis and Applications. 31(2) (2013) 199--213.
22. G. Oppenheim, M.O. Haye, M.-C. Viano, Long memory with seasonal effects, Stat. Inference Stoch. Process. 3 (2000) 53--68.
23. M. Rosenblatt, Limit theorems for Fourier transforms of functional of Gaussian sequences, Z. Wahrsch. verw. Geb. 55 (1981) 123--132.
24. M.S. Taqqu, Weak convergence to fractional Brownian motion and to the Rosenblatt process, Z. Wahrsch. verw. Gebiete. 31 (1975) 287--302.
25. M.S. Taqqu, Convergence of integrated processes of arbitrary Hermite rank, Z. Wahrsch. Verw. Gebiete. 50 (1979) 53--83.
26. M.S. Veillette, M.S. Taqqu, Properties and numerical evaluation of the Rosenblatt distribution, Bernoulli 19(3) (2013) 982--1005.
27. M. I. Yadrenko, Spectral Theory of Random Fields, Optimization Software Inc., New York, 1983.