A Journal "Theory of Probability and Mathematical Statistics"
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



Large deviations of regression parameter estimate in the models with stationary sub-Gaussian noise

A.V. Ivanov

Download PDF

Abstract: Exponential bounds for probabilities of large deviations of nonlinear regression parameter least squares estimate in the models with jointly strictly sub-Gaussian random noise are obtained.

Keywords: .Large deviations, least squares estimate, nonlinear regression, discrete white sub-Gaussian noise, spectral density

Bibliography:
[1] A.V. Ivanov, An asymtotic expansion for the distribution of the least squares estimator of the nonlinear regression parameter, Theory. Probab. Appl., 21 (1977), No3, 557–570.
[2] Prakasa Rao, B.L.S., On the exponential rate convergence of the least squares estimator in the nonlinear regression model with Gaussian errors, Statist. Probab. Lett., 2 (1984), 139–142.
[3] A. Sieders, K. O. Dzhaparidze, A large deviation result for parameter estimators and its application to nonlinear regression analysis , Ann. Statist., 15 (1987), No 3, 1031–1049.
[4] I.A. Ibragimov, R.Z. Has’minskii, Statistical estmation: Asymptptic Theory, Springer, New York, 1981.
[5] A.V. Ivanov, Asymptotic Theory of Nonlinear Regression, Kluwer Academic Publishers, Dordecht/Boston/London, 1997.
[6] A.V. Ivanov, N.N. Leonenko, Statistical Analysis of Random Fields, Kluwer Academic Publishers,Dordecht/Boston/London, 1989.
[7] Prakasa Rao, B.L.S., The rate of convergence for the least squares estimator in a non-linear regression model with dependent errors, J. Multivariate Analysis, 14 (1984), No3, 315–322.
[8] S.H. Hu, A large deviation result for the least squares estimators in nonlinear regression, Stochastic Process and their Applications, 47 (1993), 345–352.
[9] W.Z. Yang, S.H. Hu, Large deviation for a least squares estimator in a nonlinear regression model, Stat. Probab. Lett., 91 (2014), 135–144.
[10] X. Huang et al., The large deviation for the least squares estimator of nonlinear regression model based on WOD errors, J. Inequal. Appl. 125 (2016), (DOI: 10.1186/s13660-016-1064-6).
[11] J. Pfanzagl, On the measurability and consistency of minimum contrast estimates, J. Metrika, 14 (1969), 249–272.
[12] V.V. Buldygin, Yu.V. Kozachenko, Metric characterization of random variables and random processes, AMS, Providence, 2000.
[13] W. Feller, An introduction to probability theory and its applications, vol. 2, 2-nd Edition, Wiley, New York, 1957.
[14] I.I. Gikhman, A.V. Skorokhod, Introduction to the Theory of Random Processes, Dover Publications, Inc., 1996.
[15] P.J. Brockwell, R.A. Davis, Introduction to Time Series and Forecasting, 2-nd Edition, Springer,New York, 2002.