Theory of Probability and Mathematical Statistics
Large deviations of regression parameter estimate in the models with stationary sub-Gaussian noise
A.V. Ivanov
Download PDF
Abstract: Exponential bounds for probabilities of large deviations of nonlinear regression parameter least squares estimate in the models with jointly strictly sub-Gaussian random noise are obtained.
Keywords: .Large deviations, least squares estimate, nonlinear regression, discrete white sub-Gaussian noise, spectral density
Bibliography: [1] A.V. Ivanov, An asymtotic expansion for the distribution of the least squares estimator of the nonlinear regression parameter, Theory. Probab. Appl., 21 (1977), No3, 557–570.
[2] Prakasa Rao, B.L.S., On the exponential rate convergence of the least squares estimator in the nonlinear regression model with Gaussian errors, Statist. Probab. Lett., 2 (1984), 139–142.
[3] A. Sieders, K. O. Dzhaparidze, A large deviation result for parameter estimators and its application to nonlinear regression analysis , Ann. Statist., 15 (1987), No 3, 1031–1049.
[4] I.A. Ibragimov, R.Z. Has’minskii, Statistical estmation: Asymptptic Theory, Springer, New York, 1981.
[5] A.V. Ivanov, Asymptotic Theory of Nonlinear Regression, Kluwer Academic Publishers, Dordecht/Boston/London, 1997.
[6] A.V. Ivanov, N.N. Leonenko, Statistical Analysis of Random Fields, Kluwer Academic Publishers,Dordecht/Boston/London, 1989.
[7] Prakasa Rao, B.L.S., The rate of convergence for the least squares estimator in a non-linear regression model with dependent errors, J. Multivariate Analysis, 14 (1984), No3, 315–322.
[8] S.H. Hu, A large deviation result for the least squares estimators in nonlinear regression, Stochastic Process and their Applications, 47 (1993), 345–352.
[9] W.Z. Yang, S.H. Hu, Large deviation for a least squares estimator in a nonlinear regression model, Stat. Probab. Lett., 91 (2014), 135–144.
[10] X. Huang et al., The large deviation for the least squares estimator of nonlinear regression model based on WOD errors, J. Inequal. Appl. 125 (2016), (DOI: 10.1186/s13660-016-1064-6).
[11] J. Pfanzagl, On the measurability and consistency of minimum contrast estimates, J. Metrika, 14 (1969), 249–272.
[12] V.V. Buldygin, Yu.V. Kozachenko, Metric characterization of random variables and random processes, AMS, Providence, 2000.
[13] W. Feller, An introduction to probability theory and its applications, vol. 2, 2-nd Edition, Wiley, New York, 1957.
[14] I.I. Gikhman, A.V. Skorokhod, Introduction to the Theory of Random Processes, Dover Publications, Inc., 1996.
[15] P.J. Brockwell, R.A. Davis, Introduction to Time Series and Forecasting, 2-nd Edition, Springer,New York, 2002.