A Journal "Theory of Probability and Mathematical Statistics"
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978
1977
1976
1975
1974
1973
1972
1971
1970


Archive

About   Editorial Board   Contacts   Template   Publication Ethics   Peer Review Process   Special Issues   History  

Theory of Probability and Mathematical Statistics



Multi-scaling Limits for Time-Fractional Relativistic Diffusion Equations with Random Initial Data

G.-R. Liu, N.-R. Shieh

Download PDF

Abstract: Let $u(t,\mathbf{x}),\ t>0,\ \mathbf{x}\in \mathbb{R}^{n},$ be the spatial-temporal random field arising from the solution of a time-fractional relativistic diffusion equation with the time-fractional parameter $\beta\in(0,1)$, the spatial-fractional parameter $\alpha\in (0,2)$ and the mass parameter $\mathfrak{m}> 0$, subject to random initial data $u(0,\cdot)$ which is characterized as a subordinated Gaussian field. Compared with \cite{AnhHomo} written by Anh and Leoeneko in 2002, we not only study the large-scale limits of the solution field $u$, but also propose a small-scale scaling scheme, which also leads to the Gaussian and the non-Gaussian limits depending on the covariance structure of the initial data. The new scaling scheme involves not only to scale $u$ but also tore-scale the initial data $u_{0}$. In the two scalings, the parameters $\alpha$ and $\mathfrak{m}$ play distinct roles in the process of limiting,and the spatial dimensions of the limiting fields are restricted due to the slow decay of the time-fractional heat kernel.

Keywords: Large-scale limits; Small-scale limits; Relativistic diffusion equations; Random initial data; Multiple It$\hat{\textup{o}}$-Wiener integrals; Subordinated Gaussian fields; Hermite ranks.

Bibliography:
[1] J. M. Angulo, V. V. Anh, R. McVinish, and M. D. Ruiz-Medina, Fractional kinetic equations driven by Gaussian or infinitely divisible noise, Adv. Appl. Probab. 37 (2005), 366-392.
[2] V. V. Anh and N. N. Leonenko, Non-Gaussian scenarios for the heat equation with singular initial data, Stoch. Processes Appl. 84 (1999), 91-114 .
[3] V. V. Anh and N. N. Leonenko, Scaling laws for fractional diffusion-wave equations with singular data, Statis. Probab. Lett. 48 (2000), 239-252.
[4] V. V. Anh and N. N. Leonenko, Spectral analysis of fractional kinetic equations with random data, J. Statist. Phys. 104 (2001), 1349-1387.
[5] V. V. Anh and N. N. Leonenko, Renormalization and homogenization of fractional diffusion equations with random data, Probab. Theory Rel. Fields 124 (2002), 381-408.
[6] V. V. Anh, N. N. Leonenko, and L. M. Sakhno, Higher-order spectral densities of fractional random fields, J. Statist. Phys. 26 (2003), 789-814.
[7] B. Baeumer, M. M. Meerschaert, and M. Naber, Stochastic models for relativistic diffusion, Phys. Rev. E 82 (2010), 1132-1136.
[8] O. E. Barndorff-Nielsen and N. N. Leonenko, Burgers turbulence problem with linear or quadratic external potential, J. Appl. Probab. 42 (2005), 550-565.
[9] J. Bertoin, Subordinators: Examples and Applications. In Lect. Note in Math. 1717, Springer 1999.
[10] P. Breuer and P. Major, Central limit theorems for nonlinear functionals of Gaussian fields. J. Multiv. Anal., 13 (1983), 425-441.
[11] R. Carmona, W. C. Masters, and B. Simon, Relativistic Schrodinger operators: Asymptotic behaviour of the eigenfunctions, J. Funct. Anal. 91 (1990), 117-142.
[12] M. M. Djrbashian; Harmonic Analysis and Boundary Value Problems in Complex Domain. Birkh¨ auser, 1993.
[13] R. L. Dobrushin, Gaussian and their subordinated self-similar random generalized fields, Ann. Probab. 7 (1979), 1-28.
[14] R. L. Dobrushin and P. Major, Non-central limit theorems for nonlinear functionals of Gaussian fields, Z. Wahrsch. verw. Geb. 50 (1979), 1-28.
[15] P. Doukhan, G. Oppenheim, and M.S. Taqqu, Theory and Applications of Long-Range Dependence. Birkh¨ auser 2003.
[16] A. Erd´ely, W. Magnus, F. Obergettinger, F.G. Tricomi, Higher Transcendental Functions, Volume 3, McGraw-Hill 1995.
[17] A. V. Ivanov and N. N. Leonenko, Statistical Analysis of Random Fields, Kluwer Academic Publishers, Dordrecht, 1989.
[18] M. Ya. Kelbert, N. N. Leonenko, and M. D. Ruiz-Medina, Fractional random fields associated with stochastic fractional heat equations, Adv. Appl. Prob. 37 (2005), 108-133.
[19] Kampe, J. de Feriet, Random solutions of the partial differential equations, in Proc. 3rd Berkeley Symp. Math. Statist. Probab. Volume III (University of California Press, Berkeley, CA, 1955), pp. 199-208.
[20] R. Kimmel, N. Sochen, and J. Weickert, Scale-Space and PDE Methods in Computer Vision, Lecture Notes in Computer Science V. 3459. Springer, 2005.
[21] A. Kumara, M. M. Meerschaert, P. Vellaisamy, Fractional normal inverse Gaussian diffusion, Statist. Probab. Lett. 81 (2011), 146-152.
[22] N. N. Leonenko, Limit Theorems for Random Fields with Singular Spectrum. Kluwer Academic 1999.
[23] N. N. Leonenko and O. O. Mel’nikova, Rescaling and homogenization of solutions of the heat equation with a linear potential and of the corresponding Burgers equation with random data, Theory Probab. Math. Statist. 62 (2001), 77–88.
[24] N. N. Leonenko and W. A. Woyczyn´ski, Scaling limits of solution of the heat equation with non-Gaussian data, J. Statist. Phys. 91 (1998), 423-438. [25] N. N. Leonenko and W. A. Woyczyn´ski, Exact parabolic asymptotics for singular n−D Burgers’ random fields: Gaussian approximation, Stochastic Processes Appl. 76 (1998), 141-165.
[26] G.-R. Liu and N.-R. Shieh, Scaling limits for time-fractional diffusion-wave systems with random initial data, Stoch. Dyn. 10 (2010), 1-35.
[27] G.-R. Liu and N.-R. Shieh, Multi-scaling limits for relativistic diffusion equations with random initial data, Trans. Amer.Math. Soc. 367 (2015), no. 5, 3423-3446.
[28] P. Major, Muliple Wiener-Itˆ o Integrals, Lect. Note in Math. 849, Springer 1981.
[29] M. Rosenblatt, Remark on the Burgers equation, J. Math. Phys. 9 (1968), 1129-1136.
[30] M. D. Ruiz-Medina, J. M. Angulo, and V. V. Anh, Scaling limit solution of the fractional Burgers equation, Stoch. Process. Appl. 93 (2001), 285-300.
[31] M. Ryznar, Estimates of Green function for relativistic α-stable process, Potential Anal. 17 (2002), 1-23.
[32] N.-R. Shieh, On time-fractional relativistic diffusion equations, J. Pseudo-Differ. Oper. Appl. 3 (2012), 229-237.
[33] N.-R. Shieh, Free fields associated with the relativistic operator (m−√m2 −∆), J. Pseudo-Differ. Oper. Appl. 3 (2012), 309-319.
[34] M. S. Taqqu, Convergence of integrated processes of arbitrary Hermite rank, Z. Wahrsch. verw. Geb. 50 (1979), 53-83.
[35] M. W. Wong; A contraction semigroup generated by a pseudo-differential operator. Diff. and Int. Eq. 5 (1992), 193-200.
[36] M. W. Wong; An Introduction to Pseudo-Differential Operators, 2nd Edition. World Scientific, 1999.
[37] W. Woyczyn´ski, Burgers-KPZ turbulence, G¨ottingen Lectures. Lect. Note in Math. 1700, Springer 1998.