Theory of Probability and Mathematical Statistics
Multi-scaling Limits for Time-Fractional Relativistic Diffusion Equations with Random Initial Data
G.-R. Liu, N.-R. Shieh
Download PDF
Abstract: Let $u(t,\mathbf{x}),\ t>0,\ \mathbf{x}\in \mathbb{R}^{n},$ be the spatial-temporal random field arising from the solution of a time-fractional relativistic diffusion equation with the time-fractional parameter $\beta\in(0,1)$, the spatial-fractional parameter $\alpha\in (0,2)$ and the mass parameter $\mathfrak{m}> 0$, subject to random initial data $u(0,\cdot)$ which is characterized as a subordinated Gaussian field. Compared with \cite{AnhHomo} written by Anh and Leoeneko in 2002, we not only study the large-scale limits of the solution field $u$, but also propose a small-scale scaling scheme, which also leads to the Gaussian and the non-Gaussian limits depending on the covariance structure of the initial data. The new scaling scheme involves not only to scale $u$ but also tore-scale the initial data $u_{0}$. In the two scalings, the parameters $\alpha$ and $\mathfrak{m}$ play distinct roles in the process of limiting,and the spatial dimensions of the limiting fields are restricted due to the slow decay of the time-fractional heat kernel.
Keywords: Large-scale limits; Small-scale limits; Relativistic diffusion equations; Random initial data; Multiple It$\hat{\textup{o}}$-Wiener integrals; Subordinated Gaussian fields; Hermite ranks.
Bibliography: [1] J. M. Angulo, V. V. Anh, R. McVinish, and M. D. Ruiz-Medina, Fractional kinetic equations driven by Gaussian or infinitely divisible noise, Adv. Appl. Probab. 37 (2005), 366-392.
[2] V. V. Anh and N. N. Leonenko, Non-Gaussian scenarios for the heat equation with singular initial data, Stoch. Processes Appl. 84 (1999), 91-114 .
[3] V. V. Anh and N. N. Leonenko, Scaling laws for fractional diffusion-wave equations with singular data, Statis. Probab. Lett. 48 (2000), 239-252.
[4] V. V. Anh and N. N. Leonenko, Spectral analysis of fractional kinetic equations with random data, J. Statist. Phys. 104 (2001), 1349-1387.
[5] V. V. Anh and N. N. Leonenko, Renormalization and homogenization of fractional diffusion equations with random data, Probab. Theory Rel. Fields 124 (2002), 381-408.
[6] V. V. Anh, N. N. Leonenko, and L. M. Sakhno, Higher-order spectral densities of fractional random fields, J. Statist. Phys. 26 (2003), 789-814.
[7] B. Baeumer, M. M. Meerschaert, and M. Naber, Stochastic models for relativistic diffusion, Phys. Rev. E 82 (2010), 1132-1136.
[8] O. E. Barndorff-Nielsen and N. N. Leonenko, Burgers turbulence problem with linear or quadratic external potential, J. Appl. Probab. 42 (2005), 550-565.
[9] J. Bertoin, Subordinators: Examples and Applications. In Lect. Note in Math. 1717, Springer 1999.
[10] P. Breuer and P. Major, Central limit theorems for nonlinear functionals of Gaussian fields. J. Multiv. Anal., 13 (1983), 425-441.
[11] R. Carmona, W. C. Masters, and B. Simon, Relativistic Schrodinger operators: Asymptotic behaviour of the eigenfunctions, J. Funct. Anal. 91 (1990), 117-142.
[12] M. M. Djrbashian; Harmonic Analysis and Boundary Value Problems in Complex Domain. Birkh¨ auser, 1993.
[13] R. L. Dobrushin, Gaussian and their subordinated self-similar random generalized fields, Ann. Probab. 7 (1979), 1-28.
[14] R. L. Dobrushin and P. Major, Non-central limit theorems for nonlinear functionals of Gaussian fields, Z. Wahrsch. verw. Geb. 50 (1979), 1-28.
[15] P. Doukhan, G. Oppenheim, and M.S. Taqqu, Theory and Applications of Long-Range Dependence. Birkh¨ auser 2003.
[16] A. Erd´ely, W. Magnus, F. Obergettinger, F.G. Tricomi, Higher Transcendental Functions, Volume 3, McGraw-Hill 1995.
[17] A. V. Ivanov and N. N. Leonenko, Statistical Analysis of Random Fields, Kluwer Academic Publishers, Dordrecht, 1989.
[18] M. Ya. Kelbert, N. N. Leonenko, and M. D. Ruiz-Medina, Fractional random fields associated with stochastic fractional heat equations, Adv. Appl. Prob. 37 (2005), 108-133.
[19] Kampe, J. de Feriet, Random solutions of the partial differential equations, in Proc. 3rd Berkeley Symp. Math. Statist. Probab. Volume III (University of California Press, Berkeley, CA, 1955), pp. 199-208.
[20] R. Kimmel, N. Sochen, and J. Weickert, Scale-Space and PDE Methods in Computer Vision, Lecture Notes in Computer Science V. 3459. Springer, 2005.
[21] A. Kumara, M. M. Meerschaert, P. Vellaisamy, Fractional normal inverse Gaussian diffusion, Statist. Probab. Lett. 81 (2011), 146-152.
[22] N. N. Leonenko, Limit Theorems for Random Fields with Singular Spectrum. Kluwer Academic 1999.
[23] N. N. Leonenko and O. O. Mel’nikova, Rescaling and homogenization of solutions of the heat equation with a linear potential and of the corresponding Burgers equation with random data, Theory Probab. Math. Statist. 62 (2001), 77–88.
[24] N. N. Leonenko and W. A. Woyczyn´ski, Scaling limits of solution of the heat equation with non-Gaussian data, J. Statist. Phys. 91 (1998), 423-438. [25] N. N. Leonenko and W. A. Woyczyn´ski, Exact parabolic asymptotics for singular n−D Burgers’ random fields: Gaussian approximation, Stochastic Processes Appl. 76 (1998), 141-165.
[26] G.-R. Liu and N.-R. Shieh, Scaling limits for time-fractional diffusion-wave systems with random initial data, Stoch. Dyn. 10 (2010), 1-35.
[27] G.-R. Liu and N.-R. Shieh, Multi-scaling limits for relativistic diffusion equations with random initial data, Trans. Amer.Math. Soc. 367 (2015), no. 5, 3423-3446.
[28] P. Major, Muliple Wiener-Itˆ o Integrals, Lect. Note in Math. 849, Springer 1981.
[29] M. Rosenblatt, Remark on the Burgers equation, J. Math. Phys. 9 (1968), 1129-1136.
[30] M. D. Ruiz-Medina, J. M. Angulo, and V. V. Anh, Scaling limit solution of the fractional Burgers equation, Stoch. Process. Appl. 93 (2001), 285-300.
[31] M. Ryznar, Estimates of Green function for relativistic α-stable process, Potential Anal. 17 (2002), 1-23.
[32] N.-R. Shieh, On time-fractional relativistic diffusion equations, J. Pseudo-Differ. Oper. Appl. 3 (2012), 229-237.
[33] N.-R. Shieh, Free fields associated with the relativistic operator (m−√m2 −∆), J. Pseudo-Differ. Oper. Appl. 3 (2012), 309-319.
[34] M. S. Taqqu, Convergence of integrated processes of arbitrary Hermite rank, Z. Wahrsch. verw. Geb. 50 (1979), 53-83.
[35] M. W. Wong; A contraction semigroup generated by a pseudo-differential operator. Diff. and Int. Eq. 5 (1992), 193-200.
[36] M. W. Wong; An Introduction to Pseudo-Differential Operators, 2nd Edition. World Scientific, 1999.
[37] W. Woyczyn´ski, Burgers-KPZ turbulence, G¨ottingen Lectures. Lect. Note in Math. 1700, Springer 1998.