Theory of Probability and Mathematical Statistics
Necessary and Sufficient Conditions for Convergence of First-Rare-Event-Time Processes for Perturbed Semi-Markov Processes
D. S. Silvestrov
Download PDF
Abstract: Necessary and sufficient conditions for convergence in distribution of first-rare-event times and convergence in Skorokhod J-topology of first-rare-event-time processes for perturbed semi-Markov processes with finite phase space are obtained.
Keywords: Semi-Markov process, First-rare-event time, First-rare-event-time process, Convergence in distribution, Convergence in Skorokhod J-topology, Necessary and sufficient conditions
Bibliography: [1] Anisimov, V.V. (1988). Random Processes with Discrete Components. Vysshaya Shkola and Izdatel’stvo Kievskogo Universiteta, Kiev, 183 pp.
[2] Anisimov, V.V. (2008). Switching Processes in Queueing Models. Applied Stochastic Methods Series. ISTE, London and Wiley, Hoboken, NJ, 345 pp.
[3] Asmussen, S. (2003). Applied Probability and Queues. Second edition. Applications of Mathematics, 51, Stochastic Modelling and Applied Probability. Springer, New York, xii+438 pp.
[4] Asmussen, S., Albrecher, H. (2010). Ruin Probabilities. Second edition. Advanced Series on Statistical Science & Applied Probability, 14, World Scientific, Hackensack, NJ, xviii+602 pp.
[5] Bening, V.E., Korolev, V.Yu. (2002). Generalized Poisson Models and their Applications in Insurance and Finance. Modern Probability and Statistics, VSP, Utrecht, 432 pp.
[6] Drozdenko, M. (2007, 2009). Weak convergence of first-rare-event times for semi-Markov processes. I, II. Theory Stoch. Process., Part I: 13(29), no. 4, 29–63, Part II: 15(31), no. 2, 99–118.
[7] Gnedenko, B.V., Korolev, V.Yu. (1996). Random Summation. Limit Theorems and Applications. CRC Press, Boca Raton, FL, 288 pp.
[8] Gyllenberg, M., Silvestrov, D.S. (2008). Quasi-Stationary Phenomena in Nonlinearly Perturbed Stochastic Systems. De Gruyter Expositions in Mathematics, 44, Walter de Gruyter, Berlin, ix+579 pp.
[9] Kalashnikov, V.V. (1997). Geometric Sums: Bounds for Rare Events with Applications. Mathematics and its Applications, 413, Kluwer, Dordrecht, xviii+265 pp.
[10] Kartashov, N.V. (1996). Strong Stable Markov Chains, VSP, Utrecht and TBiMC, Kiev, 138 pp.
[11] Keilson, J. (1979). Markov Chain Models – Rarity and Exponentiality. Applied Mathematical Sciences, 28, Springer, New York, xiii+184 pp.
[12] Korolyuk, D.V., Silvestrov D.S. (1983). Entry times into asymptotically receding domains for ergodic Markov chains. Teor. Veroyatn. Primen., 28, 410–420 (English translation in Theory Probab. Appl., 28, 432–442).
[13] Korolyuk, D.V., Silvestrov D.S. (1984). Entry times into asymptotically receding regions for processes with semi-Markov switchings. Teor. Veroyatn. Primen., 29, 539–544 (English translation in Theory Probab. Appl., 29, 558–563).
[14] Korolyuk, V.S. (1969). On asymptotical estimate for time of a semi-Markov process being in the set of states. Ukr. Mat. Zh., 21, 842–845.
[15] Korolyuk, V.S., Korolyuk, V.V. (1999). Stochastic Models of Systems. Mathematics and its Applications, 469, Kluwer, Dordrecht, xii+185 pp.
[16] Koroliuk, V.S., Limnios, N. (2005). Stochastic Systems in Merging Phase Space. World Scientific, Singapore, xv+331 pp.
[17] Korolyuk, V., Swishchuk, A. (1992). Semi-Markov Random Evolutions. Naukova Dumka, Kiev, 254 pp. (English revised edition: Semi-Markov Random Evolutions. Mathematics and its Applications, 308, Kluwer, Dordrecht, 1995, x+310 pp.).
[18] Korolyuk, V.S., Turbin, A.F. (1976). Semi-Markov Processes and its Applications. Naukova Dumka, Kiev, 184 pp.
[19] Korolyuk, V.S., Turbin, A.F. (1978). Mathematical Foundations of the State Lumping of Large Systems. Naukova Dumka, Kiev, 218 pp. (English edition: Mathematics and its Applications, 264, Kluwer, Dordrecht, 1993, x+278 pp.)
[20] Kovalenko, I.N. (1965) On the class of limit distributions for thinning flows of homogeneous events. Litov. Mat. Sbornik, 5, 569–573.
[21] Kovalenko, I.N. (1994). Rare events in queuing theory – a survey. Queuing Systems Theory Appl., 16, no. 1-2, 1–49.
[22] Silvestrov, D.S. (1974). Limit Theorems for Composite Random Functions. Vysshaya Shkola and Izdatel’stvo Kievskogo Universiteta, Kiev, 318 pp.
[23] Silvestrov, D.S. (1980). Semi-Markov Processes with a Discrete State Space. Library for an Engineer in Reliability, Sovetskoe Radio, Moscow, 272 pp.
[24] Silvestrov D.S. (2004). Limit Theorems for Randomly Stopped Stochastic Processes. Probability and Its Applications, Springer, London, xvi+398 pp.
[25] Silvestrov, D. (2016). Necessary and sufficient conditions for convergence of first-rare-event times for perturbed semi-Markov processes. Research Report 2016-4, Department of Mathematics, Stockholm University, 39 pp. and arXiv:1603.04344.
[26] Silvestrov, D.S., Drozdenko, M.O. (2006). Necessary and sufficient conditions for weak convergence of first-rare-event times for semi-Markov processes. I, II. Theory Stoch. Process., Part I: 12(28), no. 3-4, 151–186, Part II: 12(28), no. 3-4, 187–202.
[27] Silvestrov, D., Silvestrov, S. (2016). Asymptotic expansions for stationary distributions of perturbed semi-Markov processes. In: Silvestrov, S., Ran˘ci´c, M. (Eds). Engineering Mathematics II. Algebraic, Stochastic and Analysis Structures for Networks, Data Classification and Optimization, Chapter 10. Springer Proceedings in Mathematics & Statistics 179, Springer, Heidelberg, 145 – 214.
[28] Silvestrov, D.S., Velikii, Yu.A. (1988). Necessary and sufficient conditions for convergence of attainment times. In: Zolotarev, V.M., Kalashnikov, V.V. (Eds). Stability Problems for Stochastic Models. Trudy Seminara, VNIISI, Moscow, 129–137 (English translation in J. Soviet. Math., 57, (1991), 3317–3324).
[29] Skorokhod, A.V. (1964). Random Processes with Independent Increments. Probability Theory and Mathematical Statistics, Nauka, Moscow, 278 pp. (English edition: Nat. Lending Library for Sci. and Tech., Boston Spa, 1971).
[30] Skorokhod, A.V. (1986). Random Processes with Independent Increments. Second edition, Probability Theory and Mathematical Statistics, Nauka, Moscow, 320 pp. (English edition: Mathematics and its Applications, 47, Kluwer, Dordrecht, 1991, xii+279 pp.).