Theory of Probability and Mathematical Statistics
ASYMPTOTIC NORMALITY OF KAPLANMEIER ESTIMATOR FOR MIXTURES WITH VARYING CONCENTRATIONS
R. MAIBORODA
Download PDF
Abstract: A modication of KaplanMeier estimator is considered for mixture components CDFs estimation by censored data in the case when mixing probabilities vary from observation to observation. Asymptotic normality of the estimators in the sup-norm is demonstrated.
Keywords: оцінка Каплана-Майєра, моделі сумішей зі змінними концентраціями, асимптотична нормальність цензурування.
Bibliography: 1. F. Autin and C. Pouet, Minimax rates over Besov spaces in ill-conditioned mixture-models with varying mixing-weights, J. Statist. Plann. Inference 146 (2014), 20-30.
2. P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1999.
3. O. V. Doronin, Adaptive estimation for a semiparametric model of mixture, Theory Probab. Math. Statist. 91 (2015), 29-41.
4. I. I. Gihman and A. V. Skorohod, The Theory of Stochastic Processes, vol. 1, Nauka, Moscow, 1971; English transl., Springer-Verlag, Berlin-Heidelberg-New York, 1974.
5. R. D. Gill and S. Johansen, A survey of product-integration with a view toward application in survival analysis, Ann. Statist. 18 (1990), no. 4, 1501-1555.
6. J. F. Lawless, Statistical Models and Methods for Lifetime Data, Second edition, Wiley, 2002.
7. M. Loeve, Probability Theory II, Forth edition, Springer, New York, 1978.
8. R. E. Maiboroda, On the estimation of parameters of variable mixtures, Theory Probab. Math. Statist. 44 (1991), 87-92.
9. R. E. Maiboroda, Estimates for distributions of components of mixtures with varying concentrations, Ukrainian Math. J. 48 (1996), no. 4, 618-622.
10. R. Maiboroda and O. Sugakova, Statistics of mixtures with varying concentrations with application to DNA microarray data analysis, J. Nonparametr. Stat. 24 (2012), no. 1, 201-215.
11. R. E. Maiboroda, V. G. Khizanov, A modied KaplanMeier estimator for a model of mixtures with varying concentrations, Theory Probab. Math. Statist. 92 (2016), 109-116.
12. A. Yu. Ryzhov, Estimates of distributions of components in a mixture from censoring data, Teor. Imovir. Mat. Statist. 69 (2003), 154161; English transl. in Theory Probab. Math. Statist. 69 (2004), 167-174.
13. J. Shao, Mathematical Statistics, Springer-Verlag, New York, 2003.