Theory of Probability and Mathematical Statistics
ON ASYMPTOTICS OF COMPLETE NUMBER OF PARTICLES IN ALMOST CRITICAL BRANCHING PROCESS WITH IMMIGRATION
YA. M. KHUSANBAEV
Download PDF
Abstract: We consider a sequence of branching processes with immigration, where the ospring mean tends to 1. Rates of growth and the asymptotic of uctuation of common number individuals are investigated.
Keywords: ветвящиеся процессы с иммиграцией, полное число частиц, слабая сходимость.
Bibliography: 1. A. G. Pakes, Some limit theorems for the total progeny of a branching process, Adv. Appl. Probab. 3 (1971), no. 1, 176-192.
2. A. V. Karpenko and S. V. Nagaev, Limit theorems for the complete number of descendants in a GaltonWatson branching process, Theory Probab. Appl. 38 (1993), no. 3, 433-455.
3. T. N. Sriram, Invalidity of bootstrap for critical branching process with immigration, Ann. Statist. 22 (1994), 1013-1023.
4. M. Ispany, G. Pap, and M. C. A. Van Zuijlen, Fluctuation limit of branching processes with immigration and estimation of the mean, Adv. Appl. Probab. 37 (2005), 523-528.
5. P. Billingsley, Convergence of Probability Measures, John Wiley & Sons, Inc., New York-London-Sydney, 1968.
6. R. Sh. Liptser and A. N. Shiryayev, Theory of Martingales, Mathematics and its Applications (Soviet Series), vol. 49, Kluwer Academic Publishers Group, Dordrecht, 1989.
7. D. S. Silvestrov, Limit Theorems for Composite Random Functions, Vyshcha Shkola, Kiev, 1974. (Russian)
8. C. Z. Wei and J. Winicki, Some asymptotic results for the branching process with immigration, Stochastic Process. Appl. 31 (1989), 261-282.
9. Ya. M. Khusanbaev, On the rate of convergence in a limit theorem for branching processes with immigration, Sib. Math. J. 55 (2014), no. 1, 178-184.